A Little Bit of Measure Theory Lecture 6: Continuum Economies

Jyotirmoy Bhattacharya

July 24, 2020

▲□▶ ▲圖▶ ▲ 臣▶ ▲ 臣▶ ― 臣 … 釣��

Core and competitive equilibria

Definition

An allocation x is in the core if no coalition of agents can do better than x for all its members by just using its own resources.

Question

Every competitive equilibrium is in the core. Is everything in the core a competitive equilibrium?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Core and competitive equilibria

Definition

An allocation x is in the core if no coalition of agents can do better than x for all its members by just using its own resources.

Question

Every competitive equilibrium is in the core. Is everything in the core a competitive equilibrium?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Ans: Only for a 'large' economy!

The setup

- A pure exchange economy.
- The set of commodity bundles is the positive orthant Ω in Rⁿ for some n.
- The set of consumer is T = [0, 1] with the Lebesgue measure.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

- An assignment is an integrable map from T to Ω .
- There is a fixed assignment $\mathbf{i}(t)$ such that $\int_{\mathcal{T}} \mathbf{i} > 0$.
- An allocation is an assignment **i** for which $\int_{\mathcal{T}} \mathbf{x} = \int_{\mathcal{T}} \mathbf{i}$.

Assumptions

- Desirability $x \ge y$ implies $x \succ_t y$.
- Continuity For each $y \in \Omega$ the sets $\{x : x \succ_t y\}$ and $\{x : y \succ_t x\}$ are open.
- Measurability If **x** and **y** are assignments, then the set $\{t: \mathbf{x}(t) \succ_t \mathbf{y}(t)\}$ is Lebesgue measurable in T.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

The core

Definition

A coalition of traders is a Lebesgue measurable subset of T; if it is of measure 0 is is called *null*. An allocation **y** dominates an allocation **x** via a coalition S if $\mathbf{y}(t) \succ_t \mathbf{x}(t)$ for each $t \in S$ and S is *effective* for **y**, i.e.

$$\int_{S} \mathbf{y} = \int_{S} \mathbf{i}.$$

The *core* is the set of all allocations that are not dominated via any nonnull coalition.

٠

Competitive equilibrium

A price vector p is an *n*-tuple of nonnegative real numbers, not all of which vanish. A competitive equilibrium is a pair consisting of a price vector p and an allocation \mathbf{x} , such that for almost every trader t, $\mathbf{x}(t)$ is maximal with respect to \succ_t in t's budget set.

Main theorem

Theorem

The core coincides with the set of equilibrium allocations.

Definition

A measure μ is called **non-atomic** if for every measurable set A with $\mu(A) > 0$ there exists a measurable set B with $B \subset A$ and

$$0 < \mu(B) < \mu(A)$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Theorem

The Lebesgue measure is nonatomic.

A consequence of non-atomicity

Theorem

If μ is a non-atomic measure, A is a measurable set with $\mu(A) > 0$, ϵ some positive number, then there exists a $B \subset A$ with

 $0 < \mu(B) < \epsilon$

Theorem

If μ is a non-atomic measure, A is a measurable set with $\mu(A) > 0$, $0 < \epsilon < \mu(A)$ some positive number, then there exists a $B \subset A$ with

$$\mu(B) = \epsilon$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Carathedory's Theorem

Definition

Given a set P its convex hull is the set of points x which can be written as

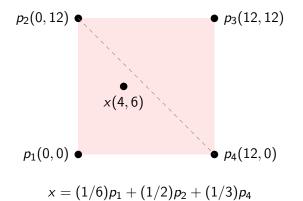
$$x = \lambda_1 y_1 + \dots + \lambda_m y_m$$

for some $y_i \in P$, $\lambda_i \ge 0$ and $\sum \lambda_i = 1$.

Theorem

If a point $x \in \mathbb{R}^d$ lies in the convex hull of a set P, then x can be written as the convex combination of at most d + 1 points in P.

Caratheodory's Theorem (contd.)



◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○○

The proof

Let **x** be in the core. Define

$$\mathbf{F}(t) = \{ y \colon y \succ_t \mathbf{x}(t) \}$$

$$\mathbf{G}(t) = \mathbf{F}(t) - \mathbf{i}(t)$$

For each set U of traders, let $\Delta(U)$ denote the convex hull of $\bigcup_{t \in U} \mathbf{G}(t)$. Define U to be full if its complement is null.

Lemma

There is a full set U of traders, such that 0 is not an interior point of $\Delta(U)$.

- ▶ *N* be the set of rational points *r* in \mathbb{R}^n for which $\mathbf{G}^{-1}(r)$ is null. Define $U = T \bigcup_{r \in N} \mathbf{G}^{-1}(r)$.
- ▶ If 0 is in the interior of $\Delta(U)$ then there is a x > 0 such that $-x \in \Delta(U)$ i.e. there exists $t_i, \ldots, t_k \in U$, positive β_1, \ldots, β_k summing to 1, $x_i \in G_i^{-1}(t_k)$ such that

$$\sum_{1}^{k} \beta_{i} x_{i} = -x > 0.$$

Proof (contd.)

By continuity we can find rational points r_i and positive rational numbers γ_i such that

$$r_i \in \mathbf{G}(t_i), \qquad \sum_{1}^k \gamma_i r_i = -r < 0$$

Pick any trader t₀ is U and find a rational α large enough such that

$$\alpha r + \mathbf{i}(t_0) > \mathbf{x}(t_0)$$

Set $r_0 = \alpha r$, $\alpha_0 = 1/(\alpha + 1)$, $\alpha_i = \alpha \gamma_i/(\alpha + 1)$. Then $\alpha_i > 0$, $\sum_{i=0}^{k} \alpha_i = 1$ and $\sum_{i=0}^{k} \alpha_i r_i = 0$, $r_i \in \mathbf{G}(t_i)$.

Proof (contd.)

- $\mathbf{G}^{-1}(r_i)$ is of positive measure for each *i*.
- For sufficiently small positive number δ we can find disjoint subsets S_i of G⁻¹(r_i) such that μ(S_i) = δα_i.
- Define coalition $S = \bigcup_{k=0}^{k} S_{k}$ and an assignment **y** by

$$\mathbf{y}(t) = \begin{cases} r_i + \mathbf{i}(t) & t \in S_i, \\ \mathbf{i}(t) & t \notin S \end{cases}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・