A Little Bit of Measure Theory Lecture 5: Conditional Expectations

Jyotirmoy Bhattacharya

July 22, 2020

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Some reminders

- Probability space (Ω, F, P): Ω is the set of states of the world, F is a σ-algebra on it and P a measure on F with P(Ω) = 1.
- A function X is measurable with respect to a σ-algebra F if for every λ

$$\{x: f(x) \leq \lambda\} \in \mathcal{F}$$

 A random variable is a measurable function on a probability space.

Integration on a set

Definition

Given a measurable function f and a measurable set G we have

$$\int_G f \, d\mu = \int f \cdot \mathbf{1}_G \, d\mu$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Less than full information

- Let Ω be the set of all states of the world.
- An agent who does not know the full state of the world may still be able to answer yes/no questions about subsets of Ω.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

► Eg., if you have observed only the first of a sequence of tosses, you can still answer whether or not ω ∈ (T??...).

$\sigma\text{-algebras}$ as information structures

Assume that the set of events about which the agent can answer yes/no questions is a σ-algebra. (Convincing?)

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

$\sigma\text{-algebras}$ as information structures

- Assume that the set of events about which the agent can answer yes/no questions is a σ-algebra. (Convincing?)
- If A ⊂ B then which σ-algebra represents greater information A or B?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\sigma\text{-algebras}$ as information structures

- Assume that the set of events about which the agent can answer yes/no questions is a σ-algebra. (Convincing?)
- If A ⊂ B then which σ-algebra represents greater information A or B?
- Answer: \mathcal{B} .
- The least information $\{\Omega, \emptyset\}$.
- Why not just restrict Ω to some Ω' (say {T, H} if you just know the result of the first-toss)?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

$\sigma\text{-algebra}$ generated by a set of RVs

Definition

Given a family of random variables X_{α} , for $\alpha \in A$ in some index set A, the σ -algebra generated by these random variables, denoted $\sigma(X_{\alpha})$, is the smallest σ -algebra with respect to which all these random variables are measurable.

Interpretation

This is the σ -algebra denoting knowledge about the X_{α} and nothing more. So the events we can answer yes/no questions about are those pertaining to the values of members of X_{α} extended to a σ -algebra.

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Measurability wrt σ -algebra

Definition

A random X is measurable with respect to a $\sigma\text{-algebra}\ \mathcal{G}$ if for every λ

 $\{\omega \colon X(\omega) \leq \lambda\} \in \mathcal{G}$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Interpretation

X is a random variable about whose values we can answer questions based on the information in \mathcal{G} .

Linking the two concepts

Theorem

If $Y(\omega)$ is measurable with respect to $\sigma(X_1, \ldots, X_n)$ then is a measurable function Φ such that

$$Y(\omega) = \Phi(X_1(\omega), \ldots, X_n(\omega))$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬる

and vice versa.

A simpler approach: partitions

- Define ω₁ ~ ω₂ if the agent cannot distinguish between ω₁ and ω₂. Say ω₁ ~ ω₂ if X(ω₁) = X(ω₂)
- Represent information by the partition of Ω generated by this equivalence relation or by the equivalence relation itself.

Partitions will not always do

Suppose we want to capture the infomation contained in a random variable X.

- We take $\omega_1 \sim \omega_2$ if $X(\omega_1) = X(\omega_2)$.
- The σ -algebra we get from the partition is

$$\{\omega \colon X(\omega) \in A\}$$

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

for sets A for which either A or A^c is countable.

These are too few sets if X takes on an uncountable set of values.

Towards conditional expectation

Suppose we have a random variable X defined on some σ -algebra \mathcal{F} . But we only have information given by some sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$. What is the best approximation we can get about X based on our information?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Towards conditional expectation (contd.)

Theorem

Given a random variable X, $\mathbb{E}[X]$ is the best predictor of X in expected squared error terms. That is, given any number c we have

$$\mathbb{E}[(X - \mathbb{E}[X])^2] \le \mathbb{E}[(X - c)^2]$$

Proof.

$$\begin{aligned} (X-c)^2 &= (X - \mathbb{E}[X] + \mathbb{E}[X] - c)^2 \\ &= (X - \mathbb{E}[X])^2 + 2(X - \mathbb{E}[X])(\mathbb{E}[X] - c) + (\mathbb{E}[X] - c)^2 \\ \mathbb{E}[(X-c)^2] &= \mathbb{E}[(X - \mathbb{E}[X])^2] + 2(\mathbb{E}[X] - c)\mathbb{E}[(X - \mathbb{E}[X])] \\ &+ (\mathbb{E}[X] - c)^2 \\ &= \mathbb{E}[(X - \mathbb{E}[X])^2] + (\mathbb{E}[X] - c)^2 \\ &\geq \mathbb{E}[(X - \mathbb{E}[X])^2] \end{aligned}$$

Conditional expectation: what do we want?

Suppose X is a random variable defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$ with $\mathbb{E}[X^2] < \infty$ and a sub- σ -algebra $\mathcal{G} \subset \mathcal{F}$ we want a \mathcal{G} measurable random variable Z with $\mathbb{E}[Z^2] < \infty$ which minimizes

$$\mathbb{E}[(X-Z)^2]$$

i.e., we want the best \mathcal{G} -measurable approximation to X in expected squared error terms.

Projection

Theorem

If x^* minimizes ||v - x|| for $x \in S$ then $(v - x^*) \cdot x = 0$ for all $x \in S$.

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

The orthogonality condition

If Z fits our requirement then for any G measurable function
Y we must have

$$\int (X-Z)Y\,d\mathbb{P}=0$$

The orthogonality condition

If Z fits our requirement then for any G measurable function Y we must have

$$\int (X-Z)Y\,d\mathbb{P}=0$$

▶ In particular for any $G \in G$ if we take $Y = 1_G$ we will have

$$\int (X-Z) \mathbf{1}_G \, d\mathbb{P} = \int_G (X-Z) \, dP = 0 \Rightarrow \int_G X \, d\mathbb{P} = \int_G Z \, d\mathbb{P}$$

The orthogonality condition

If Z fits our requirement then for any G measurable function Y we must have

$$\int (X-Z)Y\,d\mathbb{P}=0$$

▶ In particular for any $G \in G$ if we take $Y = 1_G$ we will have

$$\int (X-Z) \mathbf{1}_G \, d\mathbb{P} = \int_G (X-Z) \, dP = 0 \Rightarrow \int_G X \, d\mathbb{P} = \int_G Z \, d\mathbb{P}$$

On the other hand if the second condition holds for all G ∈ G then the first condition holds for all Y measurable wrt G. Check:

- Simple function.
- Non-negative functions.
- All functions.

Kolmogorov's definition

Definition

Given a random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}[|X|] < \infty$ and a σ -algebra $\mathcal{G} \subset \mathcal{F}$ we define $\mathbb{E}[X \mid \mathcal{G}]$ to be a \mathcal{G} measurable random variable such that for all $\mathcal{G} \in \mathcal{G}$

$$\int_{\mathcal{G}} \mathbb{E}[X \mid \mathcal{G}] \, d\mathbb{P} = \int_{\mathcal{G}} X \, d\mathbb{P}$$

Note: $\mathbb{E}[X \mid \mathcal{G}]$ is a function of ω .

Kolmogorov's definition

Definition

Given a random variable X defined on a probability space $(\Omega, \mathcal{F}, \mathbb{P})$, with $\mathbb{E}[|X|] < \infty$ and a σ -algebra $\mathcal{G} \subset \mathcal{F}$ we define $\mathbb{E}[X \mid \mathcal{G}]$ to be a \mathcal{G} measurable random variable such that for all $\mathcal{G} \in \mathcal{G}$

$$\int_G \mathbb{E}[X \mid \mathcal{G}] \, d\mathbb{P} = \int_G X \, d\mathbb{P}$$

Note: $\mathbb{E}[X \mid \mathcal{G}]$ is a function of ω .

- ▶ We have weakened $\mathbb{E}[X^2] < \infty$ to $\mathbb{E}[|X|] < \infty$
- Exists
- Unique upto sets of measure 0.

Properties of conditional expectations

Linearity

$$\mathbb{E}[\alpha X + \beta Y \mid \mathcal{G}] = \alpha \mathbb{E}[X \mid \mathcal{G}] + \beta \mathbb{E}[Y \mid \mathcal{G}]$$

- Monotonicity If $X \ge Y$ then $\mathbb{E}[X \mid \mathcal{G}] \ge \mathbb{E}[Y \mid \mathcal{G}]$.
- ► Monotone convergence If X_n is a monotonically increasing sequence of non-negativing random variables with lim_{n→∞} X_n = X then

$$\lim_{n\to\infty}\mathbb{E}[X_n\mid \mathcal{G}]=\mathbb{E}[X\mid \mathcal{G}].$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Conditional probability

Definition

$$\mathbb{P}(A \mid \mathcal{G}) = \mathbb{E}[1_A \mid \mathcal{G}]$$

Condition probability is a random variable, depends on ω . What about good old

$$\mathbb{P}(A \mid B) = rac{\mathbb{P}(A \cap B)}{\mathbb{P}(B)}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Take $\mathcal{G} = \{\Omega, B, B^c, \emptyset\}$