
A Little Bit of Measure Theory
Lecture 5: Conditional Expectations

Jyotirmoy Bhattacharya

July 22, 2020



Some reminders

I Probability space (Ω,F ,P): Ω is the set of states of the world,
F is a σ-algebra on it and P a measure on F with P(Ω) = 1.

I A function X is measurable with respect to a σ-algebra F if
for every λ

{x : f (x) ≤ λ} ∈ F

I A random variable is a measurable function on a probability
space.



Integration on a set

Definition
Given a measurable function f and a measurable set G we have∫

G
f dµ =

∫
f · 1G dµ



Less than full information

I Let Ω be the set of all states of the world.

I An agent who does not know the full state of the world may
still be able to answer yes/no questions about subsets of Ω.

I Eg., if you have observed only the first of a sequence of
tosses, you can still answer whether or not ω ∈ (T?? . . .).



σ-algebras as information structures

I Assume that the set of events about which the agent can
answer yes/no questions is a σ-algebra. (Convincing?)

I If A ⊂ B then which σ-algebra represents greater information
A or B?

I Answer: B.

I The least information {Ω, ∅}.
I Why not just restrict Ω to some Ω′ (say {T ,H} if you just

know the result of the first-toss)?
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σ-algebra generated by a set of RVs

Definition
Given a family of random variables Xα, for α ∈ A in some index set
A, the σ-algebra generated by these random variables, denoted
σ(Xα), is the smallest σ-algebra with respect to which all these
random variables are measurable.

Interpretation

This is the σ-algebra denoting knowledge about the Xα and
nothing more. So the events we can answer yes/no questions
about are those pertaining to the values of members of Xα

extended to a σ-algebra.



Measurability wrt σ-algebra

Definition
A random X is measurable with respect to a σ-algebra G if for
every λ

{ω : X (ω) ≤ λ} ∈ G

Interpretation

X is a random variable about whose values we can answer
questions based on the information in G.



Linking the two concepts

Theorem
If Y (ω) is measurable with respect to σ(X1, . . . ,Xn) then is a
measurable function Φ such that

Y (ω) = Φ(X1(ω), . . . ,Xn(ω))

and vice versa.



A simpler approach: partitions

I Define ω1 ∼ ω2 if the agent cannot distinguish between ω1

and ω2. Say ω1 ∼ ω2 if X (ω1) = X (ω2)

I Represent information by the partition of Ω generated by this
equivalence relation or by the equivalence relation itself.



Partitions will not always do

I Suppose we want to capture the infomation contained in a
random variable X .

I We take ω1 ∼ ω2 if X (ω1) = X (ω2).

I The σ-algebra we get from the partition is

{ω : X (ω) ∈ A}

for sets A for which either A or Ac is countable.

I These are too few sets if X takes on an uncountable set of
values.



Towards conditional expectation

Suppose we have a random variable X defined on some σ-algebra
F . But we only have information given by some sub-σ-algebra
G ⊂ F . What is the best approximation we can get about X based
on our information?



Towards conditional expectation (contd.)

Theorem
Given a random variable X , E[X ] is the best predictor of X in
expected squared error terms. That is, given any number c we have

E[(X − E[X ])2] ≤ E[(X − c)2]

Proof.

(X − c)2 = (X − E[X ] + E[X ]− c)2

= (X − E[X ])2 + 2(X − E[X ])(E[X ]− c) + (E[X ]− c)2

E[(X − c)2] = E[(X − E[X ])2] + 2(E[X ]− c)E[(X − E[X ])]

+ (E[X ]− c)2

= E[(X − E[X ])2] + (E[X ]− c)2

≥ E[(X − E[X ])2]



Conditional expectation: what do we want?

Suppose X is a random variable defined on a probability space
(Ω,F ,P) with E[X 2] <∞ and a sub-σ-algebra G ⊂ F we want a
G measurable random variable Z with E[Z 2] <∞ which minimizes

E[(X − Z )2]

i.e., we want the best G-measurable approximation to X in
expected squared error terms.



Projection

S

0

v

x ′
x∗

x ′′

Theorem
If x∗ minimizes ‖v − x‖ for x ∈ S then (v − x∗) · x = 0 for all
x ∈ S .



The orthogonality condition

I If Z fits our requirement then for any G measurable function
Y we must have ∫

(X − Z )Y dP = 0

I In particular for any G ∈ G if we take Y = 1G we will have∫
(X −Z )1G dP =

∫
G

(X −Z ) dP = 0⇒
∫
G
X dP =

∫
G
Z dP

I On the other hand if the second condition holds for all G ∈ G
then the first condition holds for all Y measurable wrt G.
Check:
I Simple function.
I Non-negative functions.
I All functions.
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Kolmogorov’s definition

Definition
Given a random variable X defined on a probability space
(Ω,F ,P), with E[|X |] <∞ and a σ-algebra G ⊂ F we define
E[X | G] to be a G measurable random variable such that for all
G ∈ G ∫

G
E[X | G] dP =

∫
G
X dP

Note: E[X | G] is a function of ω.

I We have weakened E[X 2] <∞ to E[|X |] <∞
I Exists

I Unique upto sets of measure 0.
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Properties of conditional expectations

I Linearity

E[αX + βY | G] = αE[X | G] + βE[Y | G]

I Monotonicity If X ≥ Y then E[X | G] ≥ E[Y | G].

I Monotone convergence If Xn is a monotonically increasing
sequence of non-negativing random variables with
limn→∞ Xn = X then

lim
n→∞

E[Xn | G] = E[X | G].



Conditional probability

Definition

P(A | G) = E[1A | G]

Condition probability is a random variable, depends on ω.

What about good old

P(A | B) =
P(A ∩ B)

P(B)

Take G = {Ω,B,Bc , ∅}


