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Some reminders

> Probability space (2, F,P): Q is the set of states of the world,
F is a o-algebra on it and P a measure on F with P(Q2) = 1.
> A function X is measurable with respect to a o-algebra F if
for every A
{x: f(x) <A} eF
» A random variable is a measurable function on a probability
space.



Integration on a set

Definition
Given a measurable function f and a measurable set G we have

/fdu—/f-l(;d,u
G



Less than full information

> Let Q be the set of all states of the world.

» An agent who does not know the full state of the world may
still be able to answer yes/no questions about subsets of (.

> Eg., if you have observed only the first of a sequence of
tosses, you can still answer whether or not w € (T77...).



o-algebras as information structures

P> Assume that the set of events about which the agent can
answer yes/no questions is a o-algebra. (Convincing?)
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o-algebras as information structures

v

Assume that the set of events about which the agent can
answer yes/no questions is a o-algebra. (Convincing?)

If A C B then which o-algebra represents greater information

A or B?
Answer: B.
The least information {€,0}.

Why not just restrict Q to some Q' (say { T, H} if you just
know the result of the first-toss)?



o-algebra generated by a set of RVs

Definition

Given a family of random variables X,, for « € A in some index set
A, the o-algebra generated by these random variables, denoted
0(Xa), is the smallest o-algebra with respect to which all these
random variables are measurable.

Interpretation

This is the o-algebra denoting knowledge about the X, and
nothing more. So the events we can answer yes/no questions
about are those pertaining to the values of members of X,
extended to a o-algebra.



Measurability wrt o-algebra

Definition
A random X is measurable with respect to a o-algebra G if for

every A
{w: X(w) <A} eg

Interpretation
X is a random variable about whose values we can answer
questions based on the information in G.



Linking the two concepts

Theorem
If Y(w) is measurable with respect to o(Xi,...,X,) then is a
measurable function ® such that

Y(w) = o(Xi(w), ..., Xn(w))

and vice versa.



A simpler approach: partitions

» Define wy ~ ws if the agent cannot distinguish between wy
and wp. Say wy ~ wy if X(w1) = X(w2)

» Represent information by the partition of {2 generated by this
equivalence relation or by the equivalence relation itself.



Partitions will not always do

» Suppose we want to capture the infomation contained in a
random variable X.

> We take wy ~ wy if X(wl) = X(wg).
> The o-algebra we get from the partition is

{w: X(w) € A}

for sets A for which either A or A€ is countable.

» These are too few sets if X takes on an uncountable set of
values.



Towards conditional expectation

Suppose we have a random variable X defined on some o-algebra
F. But we only have information given by some sub-o-algebra

G C F. What is the best approximation we can get about X based
on our information?



Towards conditional expectation (contd.)

Theorem
Given a random variable X, E[X] is the best predictor of X in
expected squared error terms. That is, given any number ¢ we have

E[(X — E[X])’] <E[(X — ¢)’]

Proof.

(X —¢)® = (X —E[X] + E[X] — ¢)?
= (X —E[X])? + 2(X — E[X])(E[X] - ¢) + (E[X] — ¢)?
E[(X — ¢)’] = E[(X — E[X])?] + 2(E[X] — ¢)E[(X — E[X])]
+ (B[X] - ¢)?
= E[(X — E[X])*] + (E[X] — ¢)?
> E[(X — E[X])’]



Conditional expectation: what do we want?

Suppose X is a random variable defined on a probability space
(Q, F,P) with E[X?] < oo and a sub-c-algebra G C F we want a
G measurable random variable Z with E[Z?] < oo which minimizes

E[(X - 2)%]

i.e., we want the best G-measurable approximation to X in
expected squared error terms.



Projection

Theorem
If x* minimizes ||v — x|| for x € S then (v — x*) - x =0 for all
x€S.



The orthogonality condition
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The orthogonality condition

> If Z fits our requirement then for any G measurable function
Y we must have

/(X—Z)Yd[P:O

» In particular for any G € G if we take Y = 15 we will have

/(X—Z)lGdIP’—/(;(X—Z)dP—O:>/GXdIP’—/(;ZdIP’

» On the other hand if the second condition holds for all G € G
then the first condition holds for all Y measurable wrt G.
Check:

» Simple function.
» Non-negative functions.
» All functions.



Kolmogorov's definition

Definition

Given a random variable X defined on a probability space
(Q, F,P), with E[|X]|] < co and a o-algebra G C F we define
E[X | G] to be a G measurable random variable such that for all

Geg
/E[X|g]dIP:/Xd]P’
G G

Note: E[X | G] is a function of w.



Kolmogorov's definition

Definition

Given a random variable X defined on a probability space
(Q, F,P), with E[|X]|] < co and a o-algebra G C F we define
E[X | G] to be a G measurable random variable such that for all

Geg
/E[X|g]dIP:/Xd]P’
G G

Note: E[X | G] is a function of w.
» We have weakened E[X?] < co to E[|X]] < oo
> Exists

» Unique upto sets of measure 0.



Properties of conditional expectations

» Linearity
ElaX + 8Y | G] = aE[X | G] + BE[Y | G]

» Monotonicity If X > Y then E[X | G] > E[Y | G].

» Monotone convergence If X, is a monotonically increasing
sequence of non-negativing random variables with
lim, oo Xp = X then

lim E[X, | 6] = E[X | G].



Conditional probability

Definition

P(A|G) =E[la | d]
Condition probability is a random variable, depends on w.

What about good old

P(AN B)

P(A1B) = —5g)

Take G = {Q, B, B¢, 0}



