A Little Bit of Measure Theory Lecture 2

Jyotirmoy Bhattacharya

July 15, 2020

◆□▶ ◆□▶ ◆ 臣▶ ◆ 臣▶ ○ 臣 ○ の Q @

The Problem

- We have a probability assignment for finitely determined sets of the sort (*T*?*H*??...).
- We would like to calculate probabilities for more complicated sets like

$$\bigcap_{k=1}^{\infty}\bigcup_{N=1}^{\infty}\bigcap_{n=N}^{\infty}\{\omega\colon |q_n(\omega)-1/2|<1/k\}=G$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 のへぐ

Caratheodory's Theorem

Definition

Given a set X, a set A of subsets of X is called a semiring if

- 1. $\emptyset \in \mathcal{A}$.
- 2. $A, B \in \mathcal{A}$ implies $A \cap B \in \mathcal{A}$.
- 3. If $A, B \in \mathcal{A}$ and $A \subset B$ then there exists disjoint \mathcal{A} -sets C_1, \ldots, C_n such that $B A = \bigcup_{k=1}^n C_k$

Theorem (Billingsley, 11.3)

Suppose that μ_0 is a set function on a semiring \mathcal{A} . Suppose that μ_0 has values in $[0, \infty]$ and that $\mu_0(\emptyset) = 0$, and that μ_0 is finitely additive and countably subadditive. Then μ_0 extends to a measure μ on a σ -algebra \mathcal{M} containing \mathcal{A} .

Additivity and subadditivity

Definition

A set function μ_0 defined on a family of sets \mathcal{A} is finitely additive if whenever $A_i, i = 1, ..., N$ are *disjoint* sets in \mathcal{A} such that $\cup_{i=1}^n A_i \in \mathcal{A}$ we have

$$\mu_0\left(\bigcup_{i=1}^n A_i\right) = \sum_{i=1}^n \mu_0(A_i)$$

Definition

A set function μ_0 defined on a family of sets \mathcal{A} is countably subadditive if whenever $A_i, i = 1, ...$ is a sequence of sets in \mathcal{A} such that $\bigcup_{i=1}^{\infty} A_i \in \mathcal{A}$ we have

$$\mu_0\left(\bigcup_{i=1}^{\infty}A_i\right)\leq\sum_{i=1}^{\infty}\mu_0(A_i)$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Proof: Outer measure

Definition

Given a set function μ_0 defined on some collection \mathcal{A} of subsets of some sets M we define the outer measure $\mu^*(E)$ for any subset E of M by

$$\mu^*(E) = \inf \sum_n \mu_0(A_i)$$

where the infimum is over all finite and countable collections A_i of A sets such that

$$E \subset \bigcup_n A_i$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Proof: Caratheodory's criteria

Definition

A subset A of M is measurable if for any subset E of M we have

 $\mu^*(A \cap E) + \mu^*(A^c \cap E) = \mu^*(E)$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

The collection *M* of measurable sets is a *σ*-algebra that contains *A*.

- μ^* is finitely additive on \mathcal{M} .
- ▶ μ^* equals μ_0 on \mathcal{A}
- ▶ Declare $\mu = \mu^*$ on \mathcal{M}

Finitely determined sets are a semiring

The collection of finitely determined sets plus the null set is a semiring.

 $1. \ \mbox{The null set is included by definition}.$

2.

$$(T?H??\ldots) \cap (T?TT?\ldots) = \emptyset$$

$$(T?H??\ldots) \cap (TH???\ldots) = (THH??\ldots)$$

3.

$$(T???\ldots) - (THT?\ldots) = (TTT?\ldots)$$
$$\cup (TTH?\ldots)$$
$$\cup (THH?\ldots)$$

(ロ)、(型)、(E)、(E)、 E) の(()

Finite additivity

Let μ be the set function that has value 0 on \emptyset and the value 2^{-n} on a finitely determined set which fixes *n* positions. Then it is finitely additive.

$$(T???...) = (TH??...) \cup (TTH?...) \cup (TTT?...)$$
$$= (THT?...)$$
$$\cup (THH?...)$$
$$\cup (TTH?...)$$
$$\cup (TTT?...)$$
$$\cup (TTT?...)$$

Also finite additivity implies finite subadditivity.

Compactness

Theorem

Let E be a finitely determined set and let \mathcal{G} be a collection of finitely determined sets. If

$$E \subset \bigcup_{G \in \mathcal{G}} G$$

then there exists a finite collection of set G_1, \ldots, G_n from \mathcal{G} such that

$$E \subset \bigcup_{i=1}^{n} G_i$$

"Every cover has a finite subcover."

Proof

- 1. Suppose E = (T??...) is covered by a collection \mathcal{G} of finitely determined sets but there is no finite cover of E in \mathcal{G} .
- Then either (*TH*?...) or (*TT*?...) does not have a finite subcover (or both). Suppose (*TT*?...) does not have a finite subcover.
- 3. Then either (*TTH*?...) or (*TTT*?...) does not have a finite subcover, and so on.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Proof (contd)

- 1. Going on like this forever we have a sequence of symbols a_2, a_3, \ldots such that
 - 1.1 $(Ta_2??...)$ does not have a finite subcover.
 - 1.2 $(Ta_2a_3??...)$ does not have a finite subcover.
 - 1.3 And so on..
- 2. Now consider $\omega = (Ta_2a_3a_4...)$. This surely belongs to E = (T??...).
- 3. Since \mathcal{G} covers E, there must be a $G \in \mathcal{G}$ such that $\omega \in G$.
- Since G is finitely determined then it must be of the form (Ta₂?a₄...a_k??...) where k is the last position determined.
- 5. But then $(Ta_2 \dots a_k?? \dots)$ has a finite subcover, namely $\{G\}$.

Countable subadditivity

Suppose

$$A = \bigcup_{i=1}^{\infty} A_i$$

Then by compactness there is a finite number N such that

$$A = \bigcup_{i=1}^{N} A_i$$

By finite subadditivity

$$\mu(A) \leq \sum_{i=1}^{N} \mu(A_i)$$

By non-negativity

$$\mu(A) \leq \sum_{i=1}^{\infty} \mu(A_i)$$

The other big example

- 1. Half open intervals on the line [a, b].
- 2. Semiring:

2.1
$$[1,3) \cap [2,5) = [2,3).$$

$$2.2 \ [1,5) - [2,3) = [1,2) \cup [3,5)$$

- 3. Set function: $\mu([a, b)) = b a$.
- 4. Countable subadditivity uses topology of the line.

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

5. Result: Lebesgue measure.

Lebesgue measurable sets

Open intervals:

$$(a,b) = \bigcup_{n=1}^{\infty} [a+1/n,b]$$

- Open sets: every open set is a countable union of open intervals.
- Closed sets: complements of open sets.
- The Borel σ-algebra: the smallest σ-algebra containing all open (eqiv. closed) sets.

Nonmeasurable sets

- For a finite set of positions *I* let τ_I(ω) be the sequence obtained by flipping the outcomes at *I*.
- Declare ω₁ ~ ω₂ if there is a finite *I* such that ω₁ = τ_I(ω₂). This is a equivalence relation:

•
$$\omega = \tau_{\emptyset}(\omega)$$

• $\omega_1 = \tau_I(\omega_2)$ implies $\tau_I(\omega_1) = \omega_2$
• $\omega_1 = \tau_I(\omega_2)$ and $\omega_2 = \tau_J(\omega_3)$ implies $\omega_1 = \tau_{I\Delta J}(\omega_3)$

Let V be a set formed by taking exactly one element from each equivalence class. Is it measurable?

Nonmeasurable set (contd)

If V is measurable then because of unbiasedness and independence μ(τ_I(V)) = μ(V) for any I.

We have

$$\Omega = \bigcup_{I} \tau_{I}(V)$$

This is a countable disjoint union (check!), so we must have

$$\mu(\Omega) = \sum_{I} \mu(\tau_{I}(V)) = \sum_{I} \mu(V)$$

・ロト ・ 目 ・ ・ ヨト ・ ヨ ・ うへつ

Contradiction!