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A Little Bit of Measure Theory
Lecture 2
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The Problem

▶ We have a probability assignment for finitely determined sets
of the sort (T?H?? . . .).

▶ We would like to calculate probabilities for more complicated
sets like

∞∩
k=1

∞∪
N=1

∞∩
n=N

{ω : |qn(ω)− 1/2| < 1/k} = G
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Caratheodory’s Theorem

Definition
Given a set X, a set A of subsets of X is called a semiring if

1. ∅ ∈ A.
2. A,B ∈ A implies A ∩ B ∈ A.
3. If A,B ∈ A and A ⊂ B then there exists disjoint A-sets

C1, . . . ,Cn such that B − A = ∪n
k=1Ck

Theorem (Billingsley, 11.3)
Suppose that µ0 is a set function on a semiring A. Suppose that
µ0 has values in [0,∞] and that µ0(∅) = 0, and that µ0 is finitely
additive and countably subadditive. Then µ0 extends to a measure
µ on a σ-algebra M containing A.
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Additivity and subadditivity
Definition
A set function µ0 defined on a family of sets A is finitely additive
if whenever Ai, i = 1, . . . ,N are disjoint sets in A such that
∪n

i=1Ai ∈ A we have

µ0

( n∪
i=1

Ai

)
=

n∑
i=1

µ0(Ai)

Definition
A set function µ0 defined on a family of sets A is countably
subadditive if whenever Ai, i = 1, . . . is a sequence of sets in A
such that ∪∞

i=1Ai ∈ A we have

µ0

(∞∪
i=1

Ai

)
≤

∞∑
i=1

µ0(Ai)
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Proof: Outer measure

Definition
Given a set function µ0 defined
on some collection A of subsets
of some sets M we define the
outer measure µ∗(E) for any
subset E of M by

µ∗(E) = inf
∑

n
µ0(Ai)

where the infimum is over all
finite and countable collections
Ai of A sets such that

E ⊂
∪
n

Ai



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Proof: Caratheodory’s criteria

A

E Definition
A subset A of M is measurable if
for any subset E of M we have

µ∗(A ∩ E) + µ∗(Ac ∩ E) = µ∗(E)
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Proof: the rest

▶ The collection M of measurable sets is a σ-algebra that
contains A.

▶ µ∗ is finitely additive on M.
▶ µ∗ equals µ0 on A
▶ Declare µ = µ∗ on M
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Finitely determined sets are a semiring

The collection of finitely determined sets plus the null set is a
semiring.

1. The null set is included by definition.
2.

(T?H?? . . .) ∩ (T?TT? . . .) = ∅
(T?H?? . . .) ∩ (TH??? . . .) = (THH?? . . .)

3.

(T??? . . .)− (THT? . . .) = (TTT? . . .)
∪ (TTH? . . .)

∪ (THH? . . .)
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Finite additivity

Let µ be the set function that has value 0 on ∅ and the value 2−n

on a finitely determined set which fixes n positions. Then it is
finitely additive.

(T??? . . .) = (TH?? . . .) ∪ (TTH? . . .) ∪ (TTT? . . .)
= (THT? . . .)
∪ (THH? . . .)

∪ (TTH? . . .)

∪ (TTT? . . .)

Also finite additivity implies finite subadditivity.
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Compactness

Theorem
Let E be a finitely determined set and let G be a collection of
finitely determined sets. If

E ⊂
∪

G∈G
G

then there exists a finite collection of set G1, . . . ,Gn from G such
that

E ⊂
n∪

i=1
Gi

“Every cover has a finite subcover.”
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Proof

1. Suppose E = (T?? . . .) is covered by a collection G of finitely
determined sets but there is no finite cover of E in G.

2. Then either (TH? . . .) or (TT? . . .) does not have a finite
subcover (or both). Suppose (TT? . . .) does not have a finite
subcover.

3. Then either (TTH? . . .) or (TTT? . . .) does not have a finite
subcover, and so on.
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Proof (contd)

1. Going on like this forever we have a sequence of symbols
a2, a3, . . . such that
1.1 (Ta2?? . . .) does not have a finite subcover.
1.2 (Ta2a3?? . . .) does not have a finite subcover.
1.3 And so on..

2. Now consider ω = (Ta2a3a4 . . .). This surely belongs to
E = (T?? . . . ).

3. Since G covers E, there must be a G ∈ G such that ω ∈ G.
4. Since G is finitely determined then it must be of the form

(Ta2?a4 . . . ak?? . . .) where k is the last position determined.
5. But then (Ta2 . . . ak?? . . .) has a finite subcover, namely {G}.
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Countable subadditivity
Suppose

A =
∞∪
i=1

Ai

Then by compactness there is a finite number N such that

A =
N∪

i=1
Ai

By finite subadditivity

µ(A) ≤
N∑

i=1
µ(Ai)

By non-negativity

µ(A) ≤
∞∑
i=1

µ(Ai)
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The other big example

1. Half open intervals on the line [a, b).
2. Semiring:

2.1 [1, 3) ∩ [2, 5) = [2, 3).
2.2 [1, 5)− [2, 3) = [1, 2) ∪ [3, 5)

3. Set function: µ([a, b)) = b − a.
4. Countable subadditivity uses topology of the line.
5. Result: Lebesgue measure.
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Lebesgue measurable sets

▶ Open intervals:

(a, b) = ∪∞
n=1[a + 1/n, b)

▶ Open sets: every open set is a countable union of open
intervals.

▶ Closed sets: complements of open sets.
▶ The Borel σ-algebra: the smallest σ-algebra containing all

open (eqiv. closed) sets.
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Nonmeasurable sets

▶ For a finite set of positions I let τI(ω) be the sequence
obtained by flipping the outcomes at I.

▶ Declare ω1 ∼ ω2 if there is a finite I such that ω1 = τI(ω2).
This is a equivalence relation:
▶ ω = τ∅(ω)
▶ ω1 = τI(ω2) implies τI(ω1) = ω2
▶ ω1 = τI(ω2) and ω2 = τJ(ω3) implies ω1 = τI∆J(ω3)

▶ Let V be a set formed by taking exactly one element from
each equivalence class. Is it measurable?
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Nonmeasurable set (contd)

▶ If V is measurable then because of unbiasedness and
independence µ(τI(V)) = µ(V) for any I.

▶ We have
Ω =

∪
I
τI(V)

▶ This is a countable disjoint union (check!), so we must have

µ(Ω) =
∑

I
µ(τI(V)) =

∑
I
µ(V)

▶ Contradiction!


