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A Little Bit of Measure Theory
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A coin tossing example

True or False
For an infinite sequence of tosses of an independent unbiased coin,
the proportion of heads always tends to 1/2.

False
▶ HHH . . .

▶ HTTHTT . . .

Modification
For an infinite sequence of tosses of an independent unbiased coin,
the proportion of heads, with high probability, tends to 1/2.
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Try bottom-up probability assignment

▶ Because the coin is unbiased and the tosses are independent,
each sequence of outcomes is as likely as any other sequence.

▶ What probability do we attach to each sequence:
▶ 0: Problem.
▶ > 0: Problem.
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Top-down probability assignment
Finitely determined subsets
▶ Let T???? . . . denote the subset of sequences where the first

toss comes out tails and the rest of the tosses can be anything.
▶ Let ?T?H??? . . . denote the subset of sequences were the

second toss is tails and the fourth toss is heads and the rest of
the tosses can be anything.

▶ Subsets like these where the outcome at a finite number of
positions is specified and the rest are left free we will call
finitely-determined subsets.

Assigning probabilities
By unbiasedness and independence a finitely-determined subset
which specifies the outcomes at n positions will have probability
2−n.

Problem
Many subsets are not finitely determined.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Top-down probability assignment
Finitely determined subsets
▶ Let T???? . . . denote the subset of sequences where the first

toss comes out tails and the rest of the tosses can be anything.
▶ Let ?T?H??? . . . denote the subset of sequences were the

second toss is tails and the fourth toss is heads and the rest of
the tosses can be anything.

▶ Subsets like these where the outcome at a finite number of
positions is specified and the rest are left free we will call
finitely-determined subsets.

Assigning probabilities
By unbiasedness and independence a finitely-determined subset
which specifies the outcomes at n positions will have probability
2−n.

Problem
Many subsets are not finitely determined.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Top-down probability assignment
Finitely determined subsets
▶ Let T???? . . . denote the subset of sequences where the first

toss comes out tails and the rest of the tosses can be anything.
▶ Let ?T?H??? . . . denote the subset of sequences were the

second toss is tails and the fourth toss is heads and the rest of
the tosses can be anything.

▶ Subsets like these where the outcome at a finite number of
positions is specified and the rest are left free we will call
finitely-determined subsets.

Assigning probabilities
By unbiasedness and independence a finitely-determined subset
which specifies the outcomes at n positions will have probability
2−n.

Problem
Many subsets are not finitely determined.



.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

.
.
.

.

Limit of the proportion of heads

Definition
For an infinite sequence of tosses ω, define

qn(ω) =
No. of heads in the first n positions in ω

n .

Problem
Is the set of “good” sequences

G = {ω : lim
n→∞

qn(ω) = 1/2}

finitely determined?
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Approximating

lim
n→∞

qn(ω) = 1/2

if and only if for every ϵ > 0 there exists a N such that for all
n ≥ N we have

|qn(ω)− 1/2| < ϵ

In fact it is enough that for every integer k > 0 there exists a N
such that for all n ≥ N we have

|qn(ω)− 1/2| < 1/k

Thus,

G =
∞∩

k=1

∞∪
N=1

∞∩
n=N

{ω : |qn(ω)− 1/2| < 1/k}
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Approximating (contd.)
The subset
for every integer k > 0 there exists a N such that for all n ≥ N we
have

|qn(ω)− 1/2| < 1/k

▶ For all n ≥ N
∞∩

n=N
{ω : |qn(ω)− 1/2| < 1/k}

▶ There exists some N, such that for all n ≥ N
∞∪

N=1

∞∩
n=N

{ω : |qn(ω)− 1/2| < 1/k}

▶ For every k, there exists some N, such that for all n ≥ N
∞∩

k=1

∞∪
N=1

∞∩
n=N

{ω : |qn(ω)− 1/2| < 1/k} = G
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The task

▶ Each of the sets

{ω : |qn(ω)− 1/2| < 1/k}

are finitely determined.
▶ But to go from them to G we have to take infinite unions and

intersections.
▶ Two problems: possibility of extending the probability

assignment and calculating probabilities.
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σ-algebra

Definition
Given a set X, a collection of subsets X of X is called a σ-algebra
on X if
▶ X ∈ X .
▶ If A ∈ X then Ac ∈ X .
▶ If Ai ∈ X for i = 1, 2, . . . then ∪∞

i=1Ai ∈ X .

Note
Intersection of sequences belong by De Morgan’s laws.

Example
▶ X = {X, ∅}
▶ X = Powerset of X.
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Measure

Definition
Given a set M and a σ-algebra M on M, a measure µ on (M,M)
is a function from elements of M to the set of extended real
numbers such that:
▶ µ(A) ≥ 0, for all A ∈ M.
▶ µ(∅) = 0.
▶ If An, n = 1, . . . , is a sequence of disjoint sets in M then

µ

(∞∪
i=1

Ai

)
=

∞∑
i=1

µ(Ai).

Examples
Length, area, volume. Probability measures:µ(M) = 1.
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Some consequences
▶ Monotonicity. If E,F ∈ M and E ⊂ F then µ(E) ≤ µ(F).
▶ Subadditivity. If En ∈ M, n = 1, . . . then

µ

( ∞∪
n=1

En

)
≤

∞∑
1

µ(En).

▶ Continuity from below. If En ∈ M, n = 1, . . . and
E1 ⊂ E2 ⊂ . . . then

µ

( ∞∪
n=1

En

)
= lim

n→∞
µ(En).

▶ Continuity from above. If En ∈ M, n = 1, . . . , and
E1 ⊃ E2 ⊃ . . . and µ(E1) < ∞ then

µ

( ∞∩
n=1

En

)
= lim

n→∞
µ(En).
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A Paradox?

▶ Any individual sequence of outcomes is an intersection of a
decreasing sequence of finitely determined sets:

TTHT . . . = T????? . . .
∩ TT???? . . .
∩ TTH??? . . .

. . .

▶ So each individual sequence belongs to any σ-algebra
containing the finitely determined sets.

▶ Each must have probability 0.
▶ How does probability add up to 1?
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Countable & Uncountable

Definition
A set is called countable if it can be put in a one-to-one
correspondence with the set of natural numbers.
A set that is neither countable nor finite is called uncountable.
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The set of outcomes is uncountable

Suppose we have a sequence
1. TFTT. . .
2. TFTF. . .
3. FTFT. . .
4. . . .

Not in the sequence
FTT. . .
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Surprise!

▶ Rationals are countable

0/1
0/2, 1/1

0/3, 1/2, 2/1
0/4, 1/3, 2/2, 3/1

. . .

▶ Reals in [0, 1] are not
0.1324. . .
0.5749. . .
. . .
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Goals of the theory

▶ Construct measures: start from measures on a class of sets
whose measures are given by some outside data. Extend
consistently to larger classes of sets.

▶ Integrate: take real valued functions on a set which has a
measure defined on it. Assign a number to each such function
in a way which captures the notion of ‘weighted sum’ with the
weights provided by the measure.
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Uses of the theory

▶ Foundations of probability: Remove the need to treat discrete
and continuous random variables separately, also deal with
variables which are neither. Give a general meaning to
conditioning. Limit theorems.

▶ A good theory of integration: Integrate more functions.
Behave nicely under limits.


