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Preface

You should not read this. Here’s why:

1. This is work in progress and is likely to contain many errors.
2. There is nothing original here. Everything in these notes I found in a

book or on the Internet and at best rearranged.
3. Thinking through stuff on your own is likely to be more productive.

But if you want to see a poor fellow trudge his way painfully through the
landscape of modern probability, welcome!

You can download the latest version of this document from https://www.

jyotirmoy.net/misc/probability-guide.pdf.
Please send comments and corrections to jyotirmoy@jyotirmoy.net.
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Chapter 1

Weak Convergence

1.1 Weak Convergence

If we say that a sequence of measures µn converges to a measure µ, what
should we require? The following come to mind:

1. The measure of each measurable set should converge uniformly.
2. The measure of each measurable set should converge.
3. (If the state space is a topological space) The expectation of each con-

tinuous function of the state should converge.
4. (If the state space is a topological space) The expectation of each con-

tinuous bounded function of the state should converge.

In the classical central limit theorem setting we can only prove weak
convergence [TODO: Give example]

In the Markov chain setting we can do better and provide TV convergence
(give citation).

For economic problems weak convergence should be enough? [TODO:
What does this even mean?]

1.2 Unbounded functions

If µn ⇒ µ then can we say that even for unbounded functions g we must have∫
g dµn →

∫
g dµ

No. Take µn = (1− 1/n)δ0 + (1/n)δn and g(x) = x.
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Chapter 2

The Multivariate Normal

Distribution

Jacod and Protter’s Probability Essentials has a nice chapter on the multi-
variate normal distribution.

2.1 Conditional distribution

Let (x, y) be a Rn+m dimensional multivariate normal vector where x is n-
dimensional and y is m-dimensional respectively. Let the mean of (x, y) be
(0, 0) and its variance-covariance matrix be nonsingular.

What is the conditional distribution of x given y?
The answer is easy if x and y are independent, because then the con-

ditional distribution of x is just the unconditional distribution, which is a
multivariate normal distribution because a′x = (a, 0)′(x, y) is normal for ev-
ery choice of a.

What if x and y are not independent. Our approach will be to reduce
to the easier independent case. We know that for components of a mul-
tivariate normal vector, zero covariance implies independence. We use the
Gram-Schmidt trick of subtracting a suitably scaled copy of one variable
from another to get zero covariance.

Define
w = y −Ax

We want E[wx′] = 0 which gives us

A = E(yx′)[E(xx′)]−1

We know that E(xx′) is nonsingular since if it were not there would be
a non-zero a such that E(xx′)a = 0, so that E[(a′x)(a′x)′] = 0, so that
(a, 0)′E[(x, y)(x, y)′](a, 0) = 0, which is inconsistent with E[(x, y)(x, y)′] be-
ing nonsingular as assumed.

Since (x,w) is obtained as a linear transformation of (x, y) the former is
also a multivariate normal vector. Moreover, x and w have zero covariance
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4 CHAPTER 2. THE MULTIVARIATE NORMAL DISTRIBUTION

by construction and hence are independent. So the conditional distribution
of w given x is just the unconditional distribution of x which is just a normal.

Now y = w + Ax, so conditional on x, y is just w shifted by a constant,
so if w has a conditional normal distribution, so has y.

To pin down the exact distribution of w we compute its mean and variance-
covariance matrix.

For the mean, since w and x are independent

µy|x = E(y | x)
= E(w | x) +Ax

since w and x are independent,

= E(w) +Ax

since E(x) = E(y) = 0

= 0 +Ax

= E(yx′)[E(xx′)]−1x

For the conditional variance covariance

Σy|x = E{[y − E(y | x)]′[y − E(y | x)] | x}
= E{(y −Ax)′(y −Ax) | x}
= E(ww′ | x)

since w is independent of x

= E[ww′]

= E[(y −Ax)(y −Ax)′]

= E(yy′)−AE(xy′)− E(yx′)A+AE(xx′)A

substituting the value of A

= E(yy′)− E(yx′)[E(xx′)]−1E(xy′)



Appendix A

Metric Spaces

A.1 The Distance Function

Where not otherwise specified X is a metric space with metric d(·, ·).

Definition A.1. If F is a non-empty closed set and x ∈ X we define

d(x, F ) = inf
y∈F

d(x, y)

.

Proposition A.2. For a fixed F , d(x, F ) is an uniformly continuous function
of F . Indeed,

|d(x, F )− d(y, F )| ≤ d(x, y)

Proposition A.3. If F is a non-empty closed set and x /∈ F then

d(x, F ) > 0

Definition A.4. If F1 and F2 are non-empty disjoint closed sets, we define

d(F1, F2) = inf
x∈F1

d(x, F2)

Proposition A.5. Under conditions of Definition A.4, d(F1, F2) > 0.

A.2 Urysohn’s Theorem

Theorem A.6 (Urysohn). If F1 and F2 are disjoint closed sets then there
exists a continuous function f such that f(x) = 0 for x ∈ F1 and f(x) = 1
for x ∈ F2.

Proof. The following function has these properties

f(x) =
d(x, F1)

d(x, F1) + d(x, F2)
.
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Proposition A.7. If F is a closed set and U is an open set such that F ⊂ U
then it is possible to find an open set V such that

F ⊂ V ⊂ V̄ ⊂ U

Proof. If F is empty we can take V = ∅. If U = X we can take V = X.

Otherwise, F and Uc are non-empty, disjoint closed sets. Let f(x) be the
continuous function provided by Theorem A.6 which is 0 on F and 1 on Uc

and take

V = {x | f(x) < 1/2}.

Then F ⊂ V and by the continuity of f , V is an open set. V̄ ⊂ {x | f(x) ≤
1/2} and the latter is disjoint from Uc so that V̄ ⊂ U .

A.3 Partitions of Unity

Theorem A.8. Let Ui, i = 1, . . . , N be an open cover of X. We can find
continuous functions fi, i = 1, . . . , N such that 0 ≤ f(x) ≤ 1, supp fi ⊂ Ui

and ∑
i

fi(x) = 1, for all x ∈ X

In this case {fi} is called a partition of unity subordinate to {Ui}.
If we did not want supp fi ⊂ Ui and could instead have done just with

fi(x) = 0 for x /∈ Ui, it would have been enough to take

fi(x) =
d(x, Uc

i )∑N
j=1 d(x, U

c
j )

.

But the stronger conclusion in the theorem as stated above needs some
more work. The following argument is taken from lecture notes by Marius
Crainic.

We first proof the following following

Proposition A.9 (Refinement). If {Ui} is a finite open cover of X, then
there is another open cover {Vi} of X such that V̄i ⊂ Ui for all i.

Proof. Consider F = X \
∪

j ̸=1 Uj . Then F is closed, and it is a subset of U1

(since the Ui cover X). By Proposition A.7 we can find an open V1 such that
F ⊂ V1 ⊂ V̄1 ⊂ U1.

From the definition of F and the fact that F ⊂ V1 it follows that {V1, U2, . . . , Un}
is also an open cover of X. We now repeat the argument in the para above
with this new open cover to replace U2 with V2 and so on.

We are now in a position to prove the main theorem.

http://www.staff.science.uu.nl/~crain101/topologie11/chapter5.pdf
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Proof of Theorem A.8. Let {Ui} be the original open cover. We apply Propo-
sition A.9 to create a refinement {Vi} and then a further refinement {Wi}
such that W̄i ⊂ Vi ⊂ V̄i ⊂ Ui. Taking W̄i and V c

i as the two sets in Theo-
rem A.6 we can find a continuous function gi such that gi(x) = 1 on W̄i and
gi(x) = 0 on V c

i . It follows that supp gi ⊂ V̄i ⊂ Ui. Now
∑N

i=1 gi(x) ̸= 0 for
all x since Wi is a cover of X and gi(x) = 1 on Wi. So defining

fi(x) =
gi(x)∑N
j=1 gi(x)

fulfils all the requirements of the theorem.

Note: For a compact K, the standard topological theorem for LCH spaces
gives a partition of unity where the functions have compact supports.

A.4 The space C(X)

We use C(X) to denote the space of bounded, real-valued, continuous func-
tions on X.

Theorem A.10. The space C(X) is separable if and only if X is compact.

If. Adapted from Conway’s Functional Analysis.
Suppose X is compact. For every n, X can be covered by a finite set

of balls of radius 1/n. Denote these by Uk
n for k = 1, . . . ,Kn. Let {fk

n}
be a partition of unity subordinate to {Uk

n} for a given n, which exists by
Theorem A.8. Now consider

∪
n{f

k
n | k = 1, . . . ,Kn}. This is a countable

set. Let F be the set of rational finite linear combinations of functions from
the set

∪
n{f

k
n | k = 1, . . . ,Kn}. Then F is a countable set of continuous

functions. We will show that it is dense in C(X).
Consider some ϕ(x) ∈ C(X). Since X is compact, f is uniformly contin-

uous. Take ϵ > 0 as given. We can find a n such that d(x, y) < 2/n implies
|ϕ(x)− ϕ(y)| < ϵ.

Pick an arbitrary xk in Uk
n for every k = 1, . . . ,Kn for the choice of n

above. For each xk pick a rational number qk such that |qk − ϕ(xk)| < ϵ.
Define

g(x) =

Kn∑
k=1

qkf
k
n(x)

which is an element of F .
Since the fk

n sum up to 1, we can write

ϕ(x) =

Kn∑
k=1

ϕ(x)fk
n(x),

so that we have

|ϕ(x)− g(x)| ≤
Kn∑
k=1

|qk − ϕ(x)|fk
n(x)
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Now fk
n(x) is nonzero only on Uk

n and here

|qk − ϕ(x)| ≤ |qk − ϕ(xk)|+ |ϕ(xk)− ϕ(x)| ≤ 2ϵ

from which we conclude, again making use of the fact that fk
n sum to 1, that

|ϕ(x)− g(x)| ≤ 2ϵ.

Since the bound is independent of x our theorem is proved.

An alternative proof uses the fact that X compact means that it is sep-
arable. Let {x1, x2, . . .} be a countably dense subset of X. Define hn(x) =
d(y, xn) and consider the algebra of real polynomials in the hn(x). Apply the
Stone-Weierstrass theorem to show that this algebra is dense in C(X). Then
approximate this algebra by the algebra of rational polynomials in hn(x)
which is countable.

Only If. Again from Conway.
IfX is not compact then there is a countably infinite subsetD = {x1, x2, . . .}

such that every subset of D is closed. For any subset A of D we can use The-
orem A.6 to find an fA(x) ∈ C(X) which is 1 on A and 0 on D \ A. For
A ̸= B, the distance between fA and fB in the uniform metric is at least 1.
Since there are uncountably many subsets of D there are uncountably many
elements in C(X) such that the distance between any pair of them is at least
1. So no countable subset of C(X) can be dense.


	Preface
	Weak Convergence
	Weak Convergence
	Unbounded functions

	The Multivariate Normal Distribution
	Conditional distribution

	Metric Spaces
	The Distance Function
	Urysohn's Theorem
	Partitions of Unity
	The space C(X)


