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CHAPTER 1

Introduction

Macroeconomics tries to understand the dynamics of economic ag-
gregates like national income, the price level or the rate of unem-
ployment. Our interest in macroeconomics arises from the following
questions about modern capitalistic economies:

(1) Economies and groups of economies go through periods of
general underutilisation of resources. Unemployment coex-
ists with unutilised plant and machinery. This is evidently
inefficient since putting the unemployed workers to work on
the unused machines would produce additional output that
can make at least some people better off without making any-
one worse off. Yet, in a slump the market mechanism does
not seem to work towards eliminating this inefficiency. At
least not fast enough. The Great Depression was the most
dramatic of such episodes but smaller slumps occur quite reg-
ularly. Is this periodic inefficiency intrinsic to a capitalistic
economy or can it be eliminated without any major changes
in the structure of the economy?

(2) Economies differ dramatically in their average standard of
living and there is no systematic tendency for this gap to
close. What are the economic forces that make some countries
rich and others poor? Why haven’t the poor countries been
able to close this gap by accumulating capital and adapting
the technology available to rich countries?

(3) Governments think, and citizens often agree, that the two
problems above can be at least mitigated through the choice
of appropriate public policies. Is this really so? And if so,
which policies should be adopted in which circumstances?
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There exist diverse ways of approaching these questions. The
present book follows the ‘neoclassical’ approach which is currently the
most popular.

The first feature of this approach, as it applies to macroeconomics,
is that we start with households, firms and governments as our basic
units of analysis. Each household, firm and government is composed of
diverse individuals who interact with each other in complex ways. In
macroeconomics we usually ignore this interaction and consider each
of these units as a black box.

Second, we assume that each household and firm maximises a well-
defined objective function subject to the constraints imposed on it by
the institutional framework of the economy. This is a major assump-
tion. First, contrary to soap operas and corporate thrillers, we assume
that conflicts of interests between the different individuals constituting
a household or firm work themselves out in a way that the unit has
a whole appears to be pursuing a coherent goal. Second, we assume
that regardless of the complexity of the environment facing the unit it
can rank all the alternatives available to it and choose the best. Thus
there is no limit to the information processing and decision making
sophistication of the economic units.

This assumption certainly captures important aspects of reality.
Economic decisions are certainly goal-oriented and often when the
stakes are high we spend considerable effort in trying to determine
which choice is the best. Yet, both introspection and systematic re-
search shows that we are not really the superoptimizers of the last
paragraph. Faced with complex situations we fall back to using sim-
ple rules of thumb rather than carrying out the impossibly complex
task of finding the best alternatives. Our decisions are often subject to
unconscious biases. Incorporating these departures from full optimiza-
tion into economic modes is among the most active areas of current
research. However, this research is yet to reach a consensus. There-
fore, in this text we limit ourselves for the most part to models based
on full optimization.

Third, in the neoclassical approach we look at equilibrium states—
states where the desired actions of different agents are all consistent
with each other. The exact form of this equilibrium condition depends
on the particular institutional structure being studied. In competitive
markets it takes the form of the equality of demand and supply. Where
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CHAPTER 1. INTRODUCTION

strategic interactions are important we use equilibrium concepts from
game theory, the most important of which is that of Nash equilibrium.

The justification for limiting our attention to equilibrium states is
that in any other state some agents will find that they cannot carry
out their plans or that their plans do not have the expected outcomes.
This will make them change their behaviour. Thus a non-equilibrium
state cannot persist. This does not by itself imply that an equilib-
rium will ultimately come about. The system may keep moving from
one non-equilibrium state to another forever. Only if we think that
this is unlikely and that a system away from equilibrium will move
close to equilibrium rapidly enough are we justified in studying only
equilibrium states.

References

Other graduate-level treatments of macroeconomics in the neo-
classical paradigm, in order or increasing difficulty, are: [Rom11],
[LS12], [SLP89]. Introductions to other approaches are [Dav11] and
[Tay04]. [Kah13] is a popular account of the psychology of decision-
making.
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CHAPTER 2

The AS-AD model

In this chapter we begin our study of short-run fluctuations by
reviewing the AS-AD model that you must have already encountered
as an undergraduate. We assume that the economy is closed.

1. Background

Throughout we assume that there is a single produced good in
terms of which we measure real output and expenditure and a single
labour market. We also assume that there are only two assets—money
and bonds—and a single nominal interest rate which measures the
return from bonds.

The AS-AD model analyses the economy in a single time period
during which we assume that the stock of capital and the state of
expectations remain unchanged. We refer to this by saying that AS-
AD is a model of the “short-run”.

2. Aggregate Demand

The demand for goods (Z) is made up of consumption (C), in-
vestment (I) and government expenditure (G). All these variables are
measured in real terms.

We take G to be given exogenously.
Households decide how much to consume based on their current

disposable income and wealth, expectations of future disposable in-
come and current and future needs. Of these, all variables other than
current disposable income are held constant in the short-run. So we
can write C = C(Y −T ) where Y is current income and T is net taxes.
We assume that T is given exogenously.

Firms decide how much to invest based on the current level of the
capital stock, the current and future levels of output and the real rate
of interest.
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CHAPTER 2. THE AS-AD MODEL

The economic story for investment is that the desired level of capi-
tal stock depends positively on present and future expected profitabil-
ity and negatively on the real rate of interest (since a higher real rate
of interest implies that a unit of real output in the future is worth rel-
atively less in terms of present output). The higher the gap between
desired and actual capital stock, the higher is the rate of investment.
Once again suppressing the variables fixed in the short-run we have
I = I(Y, i− πe) where i− πe, the difference between the nominal rate
of interest and expected inflation, equals the real rate of interest.

In equilibrium, the total output of goods must equal the total
demand for goods, that is it must be the case that

Y = C(Y − T ) + I(Y, i− πe) +G (1)

The satisfaction of this equation in necessary for goods market equi-
librium, but it is not sufficient. We have not yet discussed the supply
decision of firms and therefore it is not yet clear that firms would want
to supply a quantity of output that would satisfy this equation.

Given our assumptions the (Y, i) combinations which satisfy (1)
form a downward-sloping curve in the (Y, i) space. It is known as the
IS curve.

Looking at asset markets we assume that the demand for money
takes the form

Md = PL(Y, i)

where P is the price level. The demand for money is increasing as a
function of Y since a higher level of output also implies a higher volume
of transactions and hence a higher demand for money to finance those
transactions. It is decreasing as a function of i since by holding money
consumers must forego the interest earnings on bonds and the higher
this opportunity cost the more consumers would economise on the
holding of money.

The strict proportionality between the demand for money and the
price level needs comment. Imagine a doubling of all current prices
and wages. Assuming a fixed expected inflation rate this also implies a
doubling of all expected future prices and wages. As a result the real
opportunities available to economic agents remain unchanged. We
therefore believe that agents would carry out the same real transac-
tions. This assumption that real demands and supplies depend only
on real opportunities and not on nominal quantities is known as the
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2. AGGREGATE DEMAND

lack of money illusion. But given that prices and wages have doubled
the old level of real transactions would now require exactly double the
amount of money as before to carry out.

The supply of money (M) is assumed to be exogenous. Equality
of the supply and demand for money give

M/P = L(Y, i) (2)

For a given value of P this is an upward-sloping curve in the (Y, i)
space called the LM curve.

For each possible value of P the intersection of the IS and LM
curves (or what is the same thing, the simultaneous solution of (1)
and (2)) gives us unique values of Y and i. We can express them as
Y (P ) and i(P ). Y (P ) is decreasing and i(P ) is increasing since an
increase in P moves the LM curve leftward.

The locus Y (P ) in the (Y, P ) space is called the aggregate de-
mand (AD) curve. Though the names are similar, this curve is very
different from the demand curve for a single good that we study in
microeconomics.

First, the AD curve does not show the quantity demanded of the
single good in the economy for a given price while everything else is
being held constant. If you recall, both consumption and investment
demand depend on the level of current income. But the level of income
is not held constant while deriving the IS curve. Rather the IS curve
is the locus of points where income is chosen such that demand equals
output. Thus the AD curve is seen as a locus of (Y, P ) pairs that are
consistent with equilibrium in the goods and asset markets.

Second, the demand curve for a single normal good slopes down-
wards because an increase in price decreases the real income of con-
sumers (whose money income is assumed to be given) and gives them
an incentive to substitute away from the good whose price has in-
creased. The reason for the AD being downward sloping is entirely
different. The AD curve slopes downward because at a higher price
the demand for money is lower, which causes the LM curve to shift
leftward, decreasing the level of Y where the IS and the LM curves
intersect.
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CHAPTER 2. THE AS-AD MODEL

3. The AS curve

In deriving the IS curve (1) we mentioned that goods market equi-
librium additionally requires consideration of the supply decision of
firms.

One important aspect of supply decisions in the real world is that
money wages and prices are “sticky”, i.e. they don’t immediately ad-
just fully to changes in economic condition.

Starting from this observation we may make the simple assump-
tion that in the short-run wages and prices remain fixed at whichever
levels they were set at in the past and that firms supply the level
of output demanded at the given prices. Under this assumption the
(Y, P ) combinations consistent with the supply decisions of the firms
is a horizontal line in the (Y, P ) space—the so-called “Keynesian AS
curve”—and the intersection of this curve with the AD curve gives us
the equilibrium level of Y and P . Since the level of P is exogenously
given, we may have as well derived the equilibrium level of Y from the
IS-LM apparatus by drawing the LM curve corresponding to this P .

Even if the exogeniety of wages and prices were to be accepted,
the “Keynesian AS curve” is not consistent with perfect competition in
the goods and labour markets. Perfectly competitive firms choose the
amount of labour that they employ and hence the output that they
produce by equating the marginal product of labour to real wage.
Similarly in perfectly competitive labour markets the supply of labour
is determined by workers equating their marginal disutility from labour
to the real wage. For a given level of prices and wage, the output and
employment implied by the profit maximisation decision of firms, the
utility maximisation decisions of workers and by the intersection of
the AS-AD curve may all three be different.

In his General Theory ([Key36]) Keynes actually allowed the level
of prices to be flexible and required that it adjust in order to ensure
that the profit maximising output of firms equal the output at which IS
and LM intersected. However, he argued that in general the economy
might be in equilibrium even when the real wage is not equal to the
marginal disutility of labour.

Keynes’s framework runs into problems. First prices are in fact
sticky. They do not change immediately when aggregate demand and
output changes. Second, if we assume diminishing marginal produc-
tivity of labour and a real wage equal to the marginal productivity of
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4. THE WAY FORWARD

labour then we would expect that real wages would decrease when out-
put increases and vice-versa, i.e. real wages would be countercyclical.
However, empirical studies of real wages do not find this countercycli-
cal pattern. Finally, it is not made clear why money wages would not
fall in a situation of excess supply of labour, even if we were to accept,
as Keynes seems to argue, that a fall in money wages would not restore
equilibrium.

As a result, nowadays instead of perfect competition and flexible
prices we work with models of sticky prices and wages and use the
existence of imperfect competition in the goods and labour markets to
explain why firms and workers may be willing to accommodate changes
in demand at unchanged prices and wages. The “Keynesian AS curve”
can be thought of as a simplified expression of these theories.

However this is too drastic a simplification since it makes P and
W entirely exogenous and therefore does not allow us to discuss how
these variables respond to economic changes. So, for example, we
cannot discuss as important an issue as inflation in this framework.

Yet, even wages and prices which are “sticky” are not fixed for
ever. They do adjust with time. Firms and workers do reset prices and
wages from time to time and when they do so they take into account
the current economic conditions as well as their expectations of future
economic condition. One observation common to many models is that
higher levels of economic activity are, other things being constant,
associated with higher prices. This is the basis of the upward-sloping
AS curves that you can find in undergraduate textbooks. We shall
not derive such a curve here (though see the exercises) but postpone
the discussion to later chapters where we can approach it with better
tools.

4. The Way Forward

The IS-LM and AS-AD models are still the models many macroe-
conomists reach for when first trying to understand questions related
to aggregate fluctuations. But they have shortcomings.

First, being limited to a single short-run does not allow us to dis-
cuss the evolution of macroeconomic variables and the effects of poli-
cies over time. For example, if we want to understand the effects of
a permanent increase in the tax rate it is not enough to know what
happens in the period in which the increase is imposed. We would
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CHAPTER 2. THE AS-AD MODEL

also like to know the impact as the continued increase affects expec-
tations and asset choices in the economy, something which we cannot
do within the AS-AD model.

Limiting our study to a single short-period also creates an artificial
separation between the study of growth and fluctuations. The long-run
over which growth happens is stitched from a sequence of short-runs
and at least in principle our short-run theories must be consistent with
our long-run ones.

Second, even in a short-run the assumption that expectations are
exogenously fixed is often not plausible. While capital stocks can only
adjust slowly over time because of the finite speed of the physical pro-
cesses involved, there is no such friction holding back changes in human
beliefs. Participants in the economy continuously revise their beliefs
in the light of new information. The kind of policy interventions—
such as changes in government expenditure or the money stock—that
we study using the AS-AD framework also convey new information to
agents and very likely change their beliefs. Therefore there is always
the likelihood of error in studying the effects of policy changes like
these while holding beliefs constant.

In the rest of this book we study the behaviour of firms and house-
holds in greater detail than we have done in this chapter. We will
take up issues like the role of credit market imperfections in deter-
mining consumption and investment or how job market search and
asymmetries of information make the labor market so different from
competitive commodity markets.

In developing our models we shall also make the role of stocks
and expectations explicit. Combining these models with assumptions
regarding the evolution of stocks and expectations will then also enable
us to go beyond a single-short run and address the limitations of the
AS-AD model discussed above.

Exercises

Exercise 2.1. From your favourite undergraduate texts find at
least three different derivations of an upward-sloping AS curve. State
precisely the assumptions regarding firm and worker behaviour used
in each.

Exercise 2.2. Explain the difference between the real and the
nominal rate of interest. In the text we claimed that the real rate
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of interest is the nominal rate of interest minus the expected rate of
inflation. Why is this so?

Exercise 2.3. We derived the IS-LM model holding the stock
of money as fixed. However, most central banks nowadays set the
nominal interest rate and allow the stock of money to adjust so as to
equal the demand for money. How would you modify the IS-LM model
to incorporate this fact? (For more on this see [Rom00].)

References

The AS-AD model is covered in most undergraduate texts.
It turns out that setting up an AS-AD model in a way that is

logically and economically consistent is somewhat tricky and there are
different modelling choices that can be made. See [Dut02] for a history
of the model and alternative ways of setting it up. For critiques, see
[Bar94] and [Col95].
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CHAPTER 3

Consumption: Certainty

Savings is not an end in itself. Rather savings is the means a
household adopts in order to provide for future needs. Therefore we
can hope to be able to better analyse and predict consumption-saving
behaviour if instead of thinking of the household as choosing between
consumption and savings we think of the household as choosing be-
tween fulfilling present needs and fulfilling future ones. This is the
starting point of the intertemporal theory of consumption. To more
clearly see this central tradeoff between the present and the future we
begin by assuming in this chapter that the household faces no uncer-
tainity regarding future needs and opportunities. Of course, in reality
uncertainty has an important influence on intertemporal choices and
we extend our discussion to take it into account in Chapter 7

1. Two-period case

1.1. Budget constraint. Consider a consumer who lives for two
periods, has an endowment of y1 and y2 units of goods in the two
periods respectively and can borrow and lend any amount that they
like at the real rate of interest r.

Suppose the consumer consumes c1 in the first period. Then she
will have to take a loan of c1 − y1 to finance her consumption. (This
number can be negative, in which case the consumer is lending rather
than borrowing.) In the next period the consumer will therefore have
to make loan repayments of (1 + r)(c1 − y1). Assume that the con-
sumer does not want to make any bequests and cannot die with any
outstanding loans, consumption in the second period must be,

c2 = y2 − (1 + r)(c1 − y1)

Simplifying and rearranging we have

c1 +
c2

1 + r
= y1 +

y2
1 + r

(3)
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1. TWO-PERIOD CASE

This is the budget constraint faced by the consumer. We can interpret
this to mean that the present value of the consumer’s consumption
stream must equal the present value of their incomes.

1.2. Utility maximization. Suppose the consumer maximises
a quasiconcave utility function U(c1, c2) subject to this budget con-
straint. Then the consumer’s first-order conditions are

U1(c1, c2) = λ (4)

U2(c1, c2) = λ/(1 + r) (5)

where λ is the Lagrange multiplier corresponding to the budget con-
straint and Ui(c1, c2) denotes the partial derivative ∂U/∂ci. We have
explicitly shown the dependence of the partial derivatives on the value
of consumption in both periods. These first-order conditions along
with the budget constraint (3) together determines the value of c1, c2
and λ.

1.3. Comparative statics. Assuming that consumption in both
periods is a normal good, an increase in either y1 or y2 increases both
c1 and c2.

The effects of a change in r are ambiguous. An increase in r makes
consumption in period 2 relatively cheap compared to consumption in
period 1. Therefore the substitution effect causes c1 to decrease and
c2 to increase. It is traditional to decompose the income effect into
two parts. First, an increase in r reduces the present value of the
consumer’s endowments and hence decreases his real income. Second,
an increase in r, by making the consumption in period 2 cheaper in-
creases his real income.1 The sign of the resultant of these two effects
on consumption depends on whether the consumer is a net lender in
period 1 and a net borrower in period 2 or vice-versa. In case the
consumer is a net lender in period 1 and a net borrower in period 2
the net income effect is positive. Assuming the consumption in both
periods in a normal good, this means that the substitution effect and
the income effect act in opposite directions on c1 in this case leading
to an ambiguous effect.

1 For more about the Slutsky equation in the case of a consumer with fixed
endowments of goods see section 9.1 in Varian’s Microeconomic Analysis, 3rd ed.
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CHAPTER 3. CONSUMPTION: CERTAINTY

2. Many periods

Assume that rather than just living for two periods the consumer
lives for T + 1 periods. Further assume that the real rate of interest
takes a constant value r over the consumer’s lifetime. For convenience
we define δ = 1/(1+r). It is also convenient to start time from period 0
rather than period 1.

2.1. Budget constraint. Arguing as before, the consumer’s bud-
get constraint is

T∑
i=0

δici =

T∑
i=0

δiyi (6)

2.2. Utility function. We could proceed as before by assuming
a utility function U(c0, . . . , cT ) and deriving the first order conditions.
However, because the marginal utility in each period depends on con-
sumption in all periods it is hard to draw any sharp conclusions at
this level of generality. Therefore we need to impose some restrictions
on the form of the utility functions.

Suppose, for example we assume that the utility function is addi-
tively separable, i.e.

U(c0, . . . , cT ) = v0(c0) + v1(c1) + · · ·+ vT (cT ) (7)

Then the first-order conditions take the form

v′i(ci) = δiλ i = 0, . . . , T (8)

where, as before, λ is the Lagrange multiplier corresponding to the
budget constraint.

Sometimes we want to restrict the consumers preferences even fur-
ther, by assuming that the different vi differ from each other by only
a geometric discounting factor.

U(c0, . . . , cT ) =

T∑
i=0

βiu(ci) (9)

where β is a constant, referred to as the subjective rate of discount,
such that 0 < β < 1.
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In this case the first-order conditions take the particularly simple
form

u′(ci) =

(
δ

β

)i

λ i = 0, . . . , T (10)

In case δ = β, this implies that u′(ci) is the same for all i, which,
assuming that u′(·) is a strictly decreasing function, means that ci is
constant for all i. The present period’s income does not influence the
present period’s consumption at all. Consumption is determined solely
by lifetime resources as given by (6).

The case δ ̸= β is also instructive. Suppose δ > β. In this case
it follows from (10) that consumption decreases over time. Formally,
this is because if δ > β then by (10) u′(ci) increases over time, and
since u′(c) is a decreasing function of consumption, this implies that c
decreases over time.

The economic logic behind this result is that δ is the number of
units of consumption we have to give up at present in order to purchase
one more unit of consumption next period, whereas β is the number of
units of marginal utility we are willing to give up at present in order
to have one more unit of marginal utility in the next period. Suppose
we start with the same consumption c in this period and the next. If
we reduce consumption in the next period by a small amount ∆c then
at the prevailing market prices we can increase present consumption
by δ∆c. The increase in utility from the increase in present consump-
tion is approximately u′(c)(δ∆c).2 The decrease in utility from the
reduction in next period’s consumption is approximately βu′(c)(∆c).
The net change in utility would be (δ − β)u′(c)(∆c) which is positive
when δ > β. Thus it is beneficial to increase present consumption
and reduce future consumption if we are starting from a position of
equality. Indeed, it will be optimal to increase consumption in the
present period (say period i) and decrease consumption in the next
period (period i+ 1) till the following equality between the MRS and
the price ratio is satisfied,

u′(ci+1)

u′(ci)
=

δ

β

If δ/β is close to 1 then ci+1 is close to ci and we can use Taylor’s
Theorem from calculus to the above equation to the above equation

2We are using Taylor’s theorem: u(c+ δ∆c)− u(c) ≈ u′(c)(δ∆c)
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CHAPTER 3. CONSUMPTION: CERTAINTY

to get a useful approximation.

u′(ci+1)

u′(ci)
=

δ

β

u′(ci+1)− u′(ci)

u′(ci)
=

δ

β
− 1

Applying Taylor’s Theorem

u′′(ci)(ci+1 − ci)

u′(ci)
≈ δ

β
− 1

Defining ∆c = ci+1 − ci, and dropping the subscript i,(
u′′(c)c

u′(c)

)(
∆c

c

)
≈ δ

β
− 1

The quantity σ = −u′(c)/cu′′(c) is known as the intertemporal elas-
ticity of substitution and captures the sensitivity of marginal utility of
changes in consumption. It is positive since marginal utility decreases
with consumption. (

∆c

c

)
≈ σ

(
1− δ

β

)
The formula confirms our earlier reasoning that consumption decreases
over time if δ > β. Moreover, it shows that the sensitivity of the growth
of consumption on the rate of return depends on the intertemporal
elasticity of substitution. This is because the intertemporal elasticity
of substitution is the reciprocal of the elasticity of marginal utility
with respect to the level of consumption. The more elastic is marginal
utility to consumption, the smaller is the deviation in consumption
from a constant path that is required the equate the ratio of marginal
utilities in consecutive time periods to δ/β.

2.3. Exogenous variables. It is possible to unify (7) and (9) by
writing

vi(ci) = βiu(ci, ξi)
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where ξi is an exogenous variable such a the consumer’s age or the
number of members in the household. In this case the first-order con-
ditions become

u′(ci, ξi) =

(
δ

β

)i

λ i = 0, . . . , T

Knowing how ξ affects the marginal utility would now let us make
some predictions regarding the path of consumption.

2.4. Comparative statics. Assuming that consumption in ev-
ery period is a normal good, an increase in yi increases every ci.

The effect of an increase in r, or equivalently, a decrease in δ re-
mains ambiguous because of the same income and substitution effects
as discussed earlier. But for the utility function given by (9), we can
say a little more. From (10) we can see that a decrease in δ means
that the growth rate of consumption speeds up. Remember that even
in this case we do not have any information regarding the level of con-
sumption in any period since the level would depend on λ which in
turn depends on δ.

Exercises

1. A consumer consumes a single good in two periods—period 1 and
period 2. Let her consumption in the two periods be denoted by c1
and c2 respectively. The consumer has an endowment of e1 and e2
units of consumption in the two periods respectively. The consumer
has no other sources of income or wealth. Assume that the money
price of the consumption good in the two periods is P1 and P2

respectively and the nominal interest rate between the two periods
is i.
(a) Write down the consumer’s budget constraint.
(b) Write down an exact (not approximate) formula for the real

interest rate in this setting in terms of P1, P2 and i. (Think
of how many additional units of consumption you can get in
period 2 if you give up one unit of consumption in period 1).

(c) Argue that the consumer’s budget set depends only on the
real rate of interest, i.e., combinations of changes in prices
and the nominal interest rate which leave the real interest rate
unchanged also leave the consumer’s budget set unchanged.
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CHAPTER 3. CONSUMPTION: CERTAINTY

(d) Assume that the consumer’s utility function is given by:

U(c1, c2) = c1c2

Calculate the amount consumed and the amount saved by the
consumer in period 1 as a function of the real interest rate.
Sketch rough graphs of these two functions.

2. Consider a consumer who lives from period 0 to T , has an initial
wealth w and no other sources of income. Suppose that the con-
sumer has additive separable preferences with the felicity function,

vi(ci) = βic1−ρ
i , 0 < ρ < 1.

The consumer can lend and borrow any amount she wishes at the
real rate of interest r.
(a) What is the intertemporal elasticity of substitution correspond-

ing to this consumer’s felicity function?
(b) Use the first-order conditions of the conumer’s utility maxi-

mization problem (not a linear approximation) to show that
the optimal consumption path chosen by this consumer shows
a constant rate of growth of consumption. Derive an expression
for the growth rate of consumption in terms of β, r and ρ.

3. Consider a consumer who lives for two periods and must decide on
how much to spend on a durable good in each of the two periods.
The consumer’s utility function is given by

U(x1, x2) = [x1−ρ
1 + x1−ρ

2 ]/(1− ρ), ρ > 0

where x1 and x2 is the stock of durable goods held by the consumer
in the two periods.

The stocks are related to the consumer’s expediture c1 and c2
in the two periods by

x1 = c1

x2 = γx1 + c2, 0 < γ < 1

where (1− γ) is the rate at which the stock of the durable depreci-
ates.

The consumer has an initial wealth w and no other source of
income. She is free to lend and borrow at the interest rate r.

17 v4.3.1



2. EXERCISES

Under what conditions on γ, R and ρ will the consumer not
spend anything in the second period? Give an economic interpre-
tation for your result.

4. A and B are two agents who derive satisfaction from the consump-
tion of leisure and apples over a number of periods. For A leisure
and apples are substitutes whereas for B leisure and apples are com-
plements. Suppose an exogenous shock reduces the leisure available
to both in a given period without affecting their incomes. How will
the consumption of apples in that period change for each?

5. Consider a consumer who lives for two periods. The consumer has
a real earning of y1 and y2 in the two periods respectively and must
choose his level of real consumption c1 and c2 in the two periods.

The consumer can lend and borrow at the real rate of interest r.
However, the consumer cannot borrow more than a fraction θ (0 <
θ < 1) of the present value of his second period earnings. That is,
if b1 is the amount borrowed by the consumer in the first period
then it must be the case that

b1 ≤
θy2
1 + r

.

There are no restrictions on the amount that the consumer can
lend.
(a) Sketch the consumer’s budget set in the c1, c2 plane.
(b) Suppose that the consumer’s utility function is given by

U(c1, c2) = ln c1 + ln c2.

Calculate the consumer’s first-period consumption demand (c1)
as a function of y1, y2, θ and r. [Hint: Take the possibility of
a corner solution into account.]

(c) Calculate this consumer’s first-period marginal propensity to
consume ∂c1/∂y1. How does this marginal propensity to con-
sume change with changes in y1? Explain your answer in eco-
nomic terms.

6. Consider the following example of a two-period utility function with
habit formation:

U(c1, c2) =
1

1− ρ
[c1−ρ
1 + (c2 − γc1)

1−ρ], γ > 0, ρ > 0
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(a) Suppose a consumer with these preferences has an initial wealth
w, no other sources of income and can freely lend and borrow
at the interest rate r > 0. What will be the consumer’s optimal
choice of c1 and c2?

(b) An economist wishes to use observed data on c1, c2 and r to
estimate the parameter ρ. But the economist mistakenly as-
sumes that there is no habit formation. That is, the economist
mistakenly assumes that the consumer’s preferences are

U(c1, c2) =
1

1− ρ
[c1−ρ
1 + c1−ρ

2 ], ρ > 0.

Will this economist’s estimate of ρ be higher or lower than the
true value?
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CHAPTER 4

The Envelope Theorem

1. Parametrised optimisation problems

Let’s think of unconstrained problems first. Every optimisation
problem has an objective function. It is the function that we are
trying to maximise or minimise (henceforth maximise). Some of the
variables entering the objective function are choice variables, variables
whose values we are free to choose in order to maximise the objective
function. But all the variables entering into the objective function
need not be choice variables. The value of the objective function may
also depend on the value of other variables which we are not free to
choose. We call these the parameters of the optimisation problem.

Example 4.1. Consider the short-term profit maximising problem
of a firm that produces according to the production function

y = f(L,K) = L1/2K1/2

In the short-run the capital stock of the firm is fixed at some value K̄
and the firm can only choose the labour input L. If the firms buys
labour and capital in perfectly competitive labour market at prices
w and r respectively and sells its output in a perfectly competitive
market at the price p then its profits are:

π(L, K̄) = py − wL− rK̄ = pL1/2K̄1/2 − wL− rK̄

For the short-run profit maximising problem π(L, K̄) is the objec-
tive function, with L as a choice variable and K̄ as a parameter.1

1In fact p, r and w are also parameters in the profit function. But we shall
ignore this fact for now since we will not be looking at the effects of changes in
these variables.
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Denoting the optimal amount of labour input by L∗, the first-order
condition for profit maximisation is,

∂π

∂L
= 0

1

2
pL∗−1/2K̄1/2 − w = 0

L∗ = K̄(p/2w)2

You should check that π(L, K̄) is a concave function of L and there-
fore the first-order condition is sufficient to give us a global maximum.
The profit earned by the firm at the optimal point is,

π∗ = π(L∗, K̄)

= p[K̄1/2(p/2w)]K̄1/2 − w[K̄(p/2w)2]− rK̄

= K̄(p2/2w)− K̄(p2/4w)− rK̄

= K̄(p2/4w)− rK̄

We see that both the amount of labour input chosen by the firm
and the maximum profit it earns are functions of the value of the
parameter K̄. The function mapping the parameter values to the
maximum (or minimum) value of the objective function is called the
value function. In this case, denoting the value function by V (·) we
have,

V (K̄) = π∗ = K̄(p2/4w)− rK̄

�

2. The envelope theorem

How does the optimal value change when we change the parame-
ters? In our example since we have an explicit formula for the value
function we can calculate its value directly

V ′(K̄) = (p2/4w)− rK̄

Even when we do not have an explicit formula for the value func-
tion, there is an interesting relationship between the partial derivatives
of the objective function and the partial derivatives of the value func-
tion.

Consider the general problem of maximising the objective function

ϕ(x1, . . . , xn; c1, · · · , cm)
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where the xi are choice variables and ci are parameters.
The first order conditions for the problem are,

∂ϕ

∂xi
(x1, . . . , xn; c1, . . . , cm) = 0 i = 1, · · · , n (11)

Just as in the example, the optimal values of the choice variables,
denoted by x∗i , will be functions of the parameters c1, . . . , cm. The
value function will be given by

V (c1, . . . , cm) = ϕ(x∗1, . . . , x
∗
n; c1, . . . , cm)

Suppose we want to calculate the partial derivative of the value
function with respect to one of the parameters, say cj . In doing so we
have to take into account the fact that the optimal value of each of
the choice variables would also be a function of ci. If we assume that
the mapping from the ci to the optimal values of the choice variables
is differentiable, we can use the chain rule,

∂V

∂cj
=

∂ϕ

∂x1

∂x∗1
∂cj

+ · · ·+ ∂ϕ

∂xn

∂x∗n
∂cj

+
∂ϕ

∂cj

However, from (11), we know that ∂ϕ/∂xi is 0 for all i when the
partial derivatives are evaluated at the optimal values. So we have,

∂V

∂cj
=

∂ϕ

∂cj
(12)

This remarkably is the same result that we would have got if we
had treated each of the x∗i as a constant. But that would not have
been justified since the choice variables do vary when parameters are
varied. That is, ∂x∗i /∂cj is generally not zero. It is just that when we
are starting from an optimal point then the marginal impact on this
variation on the objective function (i.e., ∂ϕ/∂xi is zero and therefore
we can ignore the changes in the choice variables.

Equation (12) is known as the “Envelope Theorem”.

3. Geometric Interpretation

Figure 4.1 illustrates the envelope theorem in the case of Exam-
ple 4.1. Each of the coloured curves shows the level of profit for a
given level of L and for different values of K. Let’s call them “profit
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Figure 4.1. The Envelope Theorem

curves”.2 We have drawn only three of these curves but you should
imagine there to be one curve for each possible value of L. Now, since
our purpose is to maximise profit for a given value of K, we move
along a vertical line for our particular value of K and choose that L
whose profit curve is the highest at that value of K.

Thus, for example, at K = 4.0 we would choose L = 4.0 whereas
at K = 10.0 we would choose L = 2.5.

The value of the highest profit curve for a given K gives us the
highest profit we can obtain when K takes on that value. But that
is precisely the definition of the value function. Therefore the graph
of the value function touches the highest of the profit curves at each
K. Or, in other words, the graph of the value function (the black line
in the figure) must be the upper envelope of the graphs of the profit
functions for given values of L.

Since the value function is the upper envelope of the profit curves,
no profit curve can ever cross it. But at each value of K one of the

2This is not standard terminology and you must remember that these curves
are not graphs of the full profit function since we are holding L constant on each
of them.
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profit curves, corresponding to the optimal L, touches it. The only
way two graphs can touch without crossing is if they are tangent to
each other. The slope of the graph of the value function is ∂V/∂K
whereas the slope of the profit curves is ∂π/∂K. Tangency of the two
graphs implies that these slopes should be equal, which is precisely
what our the envelope theorem in eq. (12) also says when applied to
this example.

Now you know what the envelope theorem is called by that name.

4. Constrained Optimisation

So far we have discussed unconstrained problems. There is also a
version of the envelope theorem for constrained optimisation problems.
Suppose our problem is to maximise

ϕ(x1, . . . , xn; c1, . . . , cm)

subject to the constraint

h(x1, . . . , xn; c, . . . , cm) = 0 (13)

Here we have allowed both the objective function and the constraint
to depend on a set of parameters.

The first-order condition for this problem is

∂ϕ

∂xi
= λ

∂h

∂xi
i = 1, . . . n (14)

where λ is a Lagrange multiplier.
As before, if the problem has a solution the optimal values of

the choice variables, the x∗i , will be functions of the parameters of
the problem. Once again we look at the case where this mapping is
differentiable.3 Also as before, we can define the value function as

V (c1, . . . , cm) = ϕ(x∗1, . . . , x
∗
n; c1, . . . , cm)

Differentiating the value function with respect to cj gives us,

∂V

∂cj
=

∂ϕ

∂x1

∂x∗1
∂cj

+ · · ·+ ∂ϕ

∂xn

∂x∗n
∂cj

+
∂ϕ

∂cj
(15)

To simplify this we need to digress a bit. The optimal values of
the choice variables must satisfy the constraint (13) for all values of

3For sufficient conditions that this be so see [LY08, Section 11.7].
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the parameters, so we have

h(x∗1, . . . , x
∗
n; c, . . . , cm) = 0.

Differentiating this with respect to cj we get

∂h

∂x1

∂x∗1
∂cj

+ · · ·+ ∂h

∂xn

∂x∗n
∂cj

+
∂h

∂cj
= 0

Substituting the first-order conditions (14) we have,

1

λ

∂ϕ

∂x1

∂x∗1
∂cj

+ · · ·+ 1

λ

∂ϕ

∂xn

∂x∗n
∂cj

+
∂h

∂cj
= 0

or,
∂ϕ

∂x1

∂x∗1
∂cj

+ · · ·+ ∂ϕ

∂xn

∂x∗n
∂cj

= −λ
∂h

∂cj

Now this can be substituted in (15) to give us

∂V

∂cj
= −λ

∂h

∂cj
+

∂ϕ

∂cj
(16)

Equation (16) is the envelope theorem for the constrained case. It
is similar to the unconstrained envelope theorem in that the change
in the choice variables as a result of the change in the parameters
drops out of the calculation. It differs in that the change in the value
function as a result of a change in a parameter depends not just on the
direct change in the objective function (∂ϕ/∂cj) but also the change in
constraint set (∂h/∂cj). The Lagrange multiplier λ can be interpreted
as a sensitivity factor, indicating the extent to which a given change
in the constraint set translates into a change in the value function.

Example 4.2. Consider the problem of maximising the utility
function U(x1, x2) subject to the budget constraint p1x1 + p2x2 = M .
Treating x1 and x2 as choice variables and p1, p2 andM as parameters,
we have the objective function

ϕ(x1, x2; p1, p2,M) = U(x1, x2)

and the constraint function

h(x1, x2; p1, p2,M) = p1x1 + p2x2 −M

In this case the value function V (p1, p2,M) is important enough
to be given a name. It is called the indirect utility function.
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If the value of the Lagrange multiplier at a the optimal bundle is
λ, then the envelope theorem (16) tells us that,

∂V

∂M
= −λ

∂h

∂M
+

∂ϕ

∂M
= −λ · −1 + 0

= λ

This gives us an economic interpretation of the Lagrange mul-
tiplier. It measures the amount by which the maximum attainable
utility increases per unit increase in income. In looser phrasing, it is
the “marginal utility of income”.

�

26 v4.3.1



CHAPTER 5

Dynamic programming

1. The setup

In a dynamic optimisation problem, our goal is to find a path of
the choice variable which maximises the value of an objective func-
tion defined over the entire path of the choice variable. Often, there
are constraints on what paths can be chosen. For example, in the
consumption-saving problem we choose a path of consumption which
maximises the lifetime utility function subject to a budget constraint.

The dynamic programming approach to solving dynamic optimi-
sation problems turns this single large optimization problem into a
sequence of simple optimization problems. At each point of time we
try to find the best action at that particular point of time. But since
this is a dynamic problem after all, this search for the best actions
at a particular point of time has to be done with an eye on both the
past and the future. Past events and actions1 determine what choices
can be made now. By the same token, the action that we take now
will change the options available to us the in future. The value of the
objective function that will be achieved will in general depend on the
entire path of past, present and future actions and not just the action
in any period in isolation.

In the dynamic programming framework this linkage between the
past and the future is captured by the notion of the state. Intuitively,
we can think of the state at any given point of time as a description
of all the relevant information about the actions and events that have
happened until that point. The state should contain all the informa-
tion that is required from the decision-maker’s history to determine

1We want to make a distinction between events which are outside of our control
and actions which are things we choose. This distinction becomes important when
we are dealing with uncertainty.
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the set of available actions at future points of time and to evaluate the
contribution made by future actions to the objective function.

The notion that knowing the state at a point of time is enough
to know what actions are possible in the future is captured by the
following definitions:

Set of states (St): this is the set of possible states the decision-maker
can be in time t. There is one such set for each time period
t. The elements of these sets, i.e. the possible states, are
assumed to be vectors with real-number elements. Elements
of this set are denoted by st.

Set of actions (At): this is the set of possible actions that can be
taken at time t. Elements of this set are denoted by at. As
we shall see next, all possible actions cannot be taken at all
possible states.

Constraint correspondence ft(st) ⊂ At: this tells us the subset of
actions that are available in a particular state. This is not
a function but a correspondence (i.e. a set-valued function)
since for each element of St it gives us a subset and not just
a single element of At.

Transition function Γt(st, at) ∈ St+1: This tells us our state in pe-
riod t+ 1 if we take the action at in state st in period t.

With these definitions in hand we can define the set of feasible
plans when starting with st at time t, denoted by Φt(st), as the set of
sequences of actions (at, . . . , aT ) such that

ai ∈ fi(si) for i = t, . . . , T

and

si+1 = Γi(si, ai) for i = t, . . . , T − 1

The first condition says that the action taken on each date is a feasible
action given the state. The second condition says that the state at each
date is derived from the state and action taken in the previous date,
with the state at time t as given.

The set of feasible plans tells us about the constraints faced in
our optimisation problem. What about the objective function? We
assume that the objective function can be written in an additively
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separable form

Ut(at, st, . . . , aT , sT ) =

T∑
i=t

vi(ai, si)

where vt(at, st) is the per-period payoff function that gives the contri-
bution of action at in state st at time t to the overall objective. Being
able to write the objective function in an additively separable form is
essential for us to be able to use dynamic programming.2

In writing the above objective function we have also assumed that
there is a finite time period T at which our optimisation problem comes
to an end. This assumption of what is known as a finite horizon is made
just to simplify the mathematics. Dynamic programming problems
with an infinite horizon are routinely used in economic modelling.

The solution to the dynamic programming problem is expressed in
terms of two functions:

Policy function gt(st) ∈ ft(st): The policy function tells us the best
action to take in each possible state at time t among all the
available actions. In general it is possible that there be two
equally good actions at a particular state, in which case the
policy function would have to be replaced by the policy cor-
respondence.

Value function Vt(st) ∈ R: The value function denotes the maximum
attainable value of the objective function when starting at
time t from state st. That is,

Vt(st) = max
(at,...,aT )∈Φt(st)

Ut(at, st, . . . , aT , sT )

= max
(at,...,aT )∈Φt(st)

[vt(at, st) + · · ·+ vT (aT , sT )]

In applications of dynamic programming we generally want to
know the optimal path starting at a specific point of time (taken to
be t = 0 here) and from a particular state at that point of time (say
s̄0). But we have defined the policy and value functions for all points
of time and for each possible state at each of the time periods. Thus it
would seem that we have multiplied our work manyfold beyond what
is necessary for our original problem. But as we shall see below, being

2We are cheating a bit here. The assumption of additive separability can be
relaxed to what is called ‘recursiveness’ while still allowing the use of dynamic
programming.
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willing to contemplate the policy and value functions for all possible
time periods and states often actually simplifies the task of solving the
original problem.

2. Bellman’s Principle of Optimality

Suppose I am starting at some time t < T from some particular
state st and trying to find the best actions from time t to T , where
‘best’ means the choices of actions and consequent states which max-
imise

Ut(at, st, . . . , aT , sT ) =

T∑
i=t

vi(ai, si).

Because of the additive nature of the lifetime utility function we can
rewrite the above equation as

Ut(at, st, . . . , aT , sT ) = vt(at, st) + Ut+1(at+1, st+1, . . . , aT , sT )

If we divide the plan (path of actions and corresponding states) from
time t to time T into a “head” consisting of the action in period t
and a “tail” consisting of actions in period t+ 1 to T then the above
equation says that the lifetime utility of the plan starting at period t
is the sum of the per-period payoff at time t (the value of the “head”)
and the lifetime utility of the remaining part of the plan from period
t+ 1 onwards (the value of the “tail”).

How do we find the plan which maximises Ut? Suppose we choose
the action ât in period t. This will lead us to the state ŝt+1 = Γt(st, ât)
in the next period. Now we have to pick a plan from period t + 1
onward. Now Ut = vt(ât, st) + Ut+1 and vt(ât, st) is already fixed by
our choice of action ât in period t. Therefore in choosing our plan
from period t + 1 onward the best we can do is to pick a plan that
maximises Ut+1. This optimal plan for the “tail” yields the value of
Ut+1 equal to Vt+1(ŝt+1). Thus we can evaluate each choice of action
ât in the “head” by looking at

Ũt = vt(ât, st) + Vt+1(ŝt+1), where ŝt+1 = Γ(st, ât)

We have put a tilde over Ut to remind ourselves that now we are not
considering arbitrary plans starting at t but only plans where the “tail”
component is optimal given the state ŝt+1 at which we find ourselves
in the beginning of period t+ 1.
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The optimal plan from period t involves choosing ât which max-
imises the expression above. Since the value function gives the value
of the objective function Ut for the optimal plan, it is therefore the
case that,

Vt(st) = max
ât∈ft(st)

[vt(ât, st) + Vt+1(Γ(st, ât))], for t < T (17)

Equation (17) above which relates the value function at consecutive
time periods is known as Bellman’s Equation. The argument above,
which shows that the value function must satisfy Bellman’s equation
is known as Bellman’s Principle of Optimality.3

Intuitively Bellman’s equation tells us that we can evaluate each
present action by adding its contribution vt(ât, st) to the objective in
the present period and the value Vt+1(ŝt+1) of the state in which it
leaves us in the next period. Provided we know the function Vt+1 for
all possible states in the next period we can choose the best action in
the current period by choosing ât to maximise this sum. Thus we have
turned the big optimisation problem of choosing an entire sequence of
actions from time 0 to time T into a sequence of simple optimisation
problems, one for each time period t, in each of which we choose a
single action ât.

But there seems to be a chicken-and-egg problem: we cannot use
Bellman’s equation without knowing Vt+1 for each t and how do we
know Vt+1 if we have not solved the optimisation problem already?
Here our finite horizon assumption makes life particularly simple for
us.

Since period T is the last period, our objective function in that
period is

UT (aT , sT ) = vT (aT , sT )

and the value function is simply given by

VT (sT ) = max
aT∈fT (sT )

vT (aT , sT )

We can solve this maximisation problem and calculate VT since vT (·, ·)
is a known function.

3To be complete, Bellman’s principle of optimality also deals with the converse:
that a function which satisfies Bellman’s equation plus some other technical con-
ditions must be the value function. This converse is not important in our current
finite horizon setting.
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Now consider Bellman’s equation for period T − 1:

VT−1(sT−1) = max
âT−1∈ft(sT−1)

[vT−1(âT−1, sT−1) + VT (Γ(sT−1, âT−1))]

As we have calculated VT (·) in the previous step, all the functions
in the maximisation problem are known and we can solve the problem
to calculate VT−1. With this in hand we can solve Bellman’s equation
for period T − 2. We keep going backward one period at a time until
we have calculated the value function for all periods until period 0.
At each step the value of ât, as a function of st, which solves the
maximisation problem gives us the policy function. So by the end of
our process we also have the policy function for each time period.

Now if we are given a starting state s̄0 in period 0 we can use the
calculated policy function for period 0 to find the best action a0 in
period 0. We know from the transition function that we will end up
in state s1 = Γ(s̄0, a0) in the next period. The policy function for
period 1 tells us the best action a1 to take in that period. We again
use the transition function to tell us the next state s2 = Γ(s1, a1).
And so on until we have traced out the optimal plan to time T . Our
optimisation problem is solved!

The way we have calculated the value function backwards from a
known final time period is sometimes called “backward induction”.

3. Example: consumption-savings with log utility

Suppose that the consumer maximises

T∑
i=0

log(ci)

subject to
T∑
i=0

ci/R
i = w0

Can we solve this maximisation problem using dynamic program-
ming? The action variable in this case must be ci since it is the variable
being chosen by the decision maker. The objective function is already
in an additively separable form with a per-period payoff log(ci). But
what is the state?

Since the per-period payoff depends only on the action variable ci
we do not need any notion of state to evaluate payoffs. But the choice
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of a consumption in each period does affect future periods through the
budget. The more we consume today, the less purchasing power we
have to consume tomorrow. We can capture this by rearranging the
budget slightly to read,

T∑
i=1

ci/R
i = w0 − c0

Multiplying throughout by R we have

T∑
i=1

ci/R
(i−1) = R(w0 − c0)

Which shows us that the path of consumption from time 1 onwards
follows a budget constraint of the same form as the period 0 budget
constraint provided we take

w1 = R(w0 − c0)

This suggests to us that we can take the wealth at the beginning of
period t as our state with the transition function,

wt+1 = R(wt − ct), for t = 0, . . . , T

and the constraint function

cT = wT

The constraint captures the fact that there can be no outstanding debt
in the last period and a consumer who has monotonic preferences
would not leave any wealth unused in the last period. There is no
constraint on consumption in periods other that T .4.

You can check that we have formulated the problem right by elim-
inating w1, . . . , wT in the transition functions and constraints above
to recover our original budget constraint.

Now we can use backward induction to calculate the value function
and policy function for all time periods. Denoting the policy function
by g(·) and the value function in period t by Vt(·), we have,

gT (w) = w, VT (wT ) = log(gT (w)) = log(w) (18)

4We could have imposed a non-negativity constraint but we leave it out for
simplicity
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Now consider period T − 1. Bellman’s principle of optimality tells
us,

VT−1(w) = max
c

[log(c) + VT (R(w − c))]

= max
c

[log(c) + log(R(w − c))] [using (18)]
(19)

The first-order condition for this maximisation problem is:

1

c
+

−R

R(w − c)
= 0

w − c = c

c = w/2

Since the objective function in (19) is concave in c (check this!),
the first-order condition is sufficient and gives us our policy function:

gT−1(w) = w/2

Substituting this into (19) we get the value function,

VT−1(w) = log(gT−1(w)) + VT (R(w − gT−1(w)))

= log(w/2) + log(Rw/2)

= log(R) + 2 log(w/2)

(20)

Now that we know VT−1 we could use the Bellman equation re-
lating Vt−2 to Vt−1 to derive gT−2 and Vt−2. If you do this you will
find,

gT−2(w) = w/3, VT−2(w) = (1 + 2) log(R) + 3 log(w/3) (21)

We could continue like this to find VT−3, . . . , V0. In general this
is precisely what we do. In fact, in most applications of dynamic
programming it is not possible to express the value function by a
formula in the state variables and the best that we can do is to use
a computer to calculate the value function at a number of possible
values of the state variable using Bellman’s equation.

But our present problem is a particularly simple one. Looking
at (20) and (21) suggests to us the guess,

VT−n(w) =
n(n+ 1)

2
log(R) + (n+ 1) log

(
w

n+ 1

)
(22)

[Remember 1 + 2 + · · ·+ n = n(n+ 1)/2]
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How do we check that our guess is right? We will use the principle
of mathematical induction. By comparing to (20) we see that (22) is
correct for n = 1. Suppose that the equation is true for n = k. What
then would be VT−(k+1)? We once again write down the Bellman
equation

VT−(k+1) = max
c

[log(c) + VT−k(R(w − c))]

= max
c

[
log(c) +

k(k + 1)

2
log(R) + (k + 1) log

(
R(w − c)

k + 1

)]
[assuming (22)]

(23)

The first-order condition is:

1

c
+ (k + 1)

(
k + 1

R(w − c)

)(
−R

k + 1

)
= 0

(k + 1)
1

(w − c)
=

1

c

c = w/(k + 2)

(24)

Substituting this into (23) we have

VT−(k+1) = log(c) +
k(k + 1)

2
log(R) + (k + 1) log

(
R(w − c)

k + 1

)
substituting (24),

= log

(
w

k + 2

)
+

k(k + 1)

2
log(R) + (k + 1) log

(
Rw

k + 2

)
= log

(
w

k + 2

)
+

k(k + 1)

2
log(R) + (k + 1) log(R) + (k + 1) log

(
w

k + 2

)
=

(k + 2)(k + 1)

2
log(R) + (k + 2) log

(
w

k + 2

)
(25)

But this is the same as (22) for n = k + 1. We therefore conclude
that if (22) is true for n = k it is also true for n = k + 1. We have
already checked that (22) is true for n = 1. Hence we conclude by the
principle of mathematical induction that the value function for our
dynamic programming problem is given by (22) for n = 1, . . . , T .
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Also, now that we have verified that (22) is indeed the value func-
tion of the problem, (24) gives the policy function, i.e.

gT−n(w) = w/(n+ 1) (26)

4. The Euler equation

As we discussed in the last section, for most dynamic programming
problems it is not possible to compute the value and policy functions in
terms of simple formulae. The best we can do is to calculate numerical
values. But even if we cannot find an exact formula for the solution
to our optimisation problem, it may still be possible to get some qual-
itative information about the problem by studying the consequences
of the Bellman equation. That is the subject of this section.

Let’s recall the Bellman equation,

Vt(wt) = max
ct

[u(ct) + Vt+1(R(wt − ct))

The first order condition for this maximisation problem is:

u′(ct) = RV ′
t+1(R(wt − ct)) (27)

By itself (27) does not seem very useful unless we know Vt+1(·) and
can calculate its derivative. But there is a trick that we can use to
eliminate this unknown derivative from (27).5

Let c∗t (wt) be the optimal consumption in period t when period t
wealth is wt. From (27) we already know that,

u′[c∗t (wt)] = RV ′
t+1[R(wt − c∗t (wt))] = RV ′

t+1(wt+1) (28)

But from the definition of the value function

Vt(wt) = u[c∗t (wt)] + Vt+1[R(wt − c∗t (wt))]

Differentiating with respect to wt we have,

V ′
t (wt) = u′[c∗t (w)]c

∗
t
′(wt) + V ′

t+1[R(wt − c∗t (wt))][R(1− c∗t
′(wt))]

= c∗t
′(wt)[u

′(·))−RV ′
t+1(·)] +RV ′

t+1[R(wt − c∗t (wt))]

From (28) the first terms equals 0, so,

V ′
t (wt) = RV ′

t+1(wt+1)

5The ‘trick’ is a particular case of a general result known as the envelope the-
orem. See section M.L of Mas-Colell, Whinston and Green or some mathematical
methods book for more detail.
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Using (28)

V ′
t (wt) = u′(ct)

The equation above was derived for arbitrary t. So it is equally
good for t+ 1, i.e.

V ′
t+1(wt+1) = u′(ct+1)

Substituting this in (28) we have,

u′(ct+1)

u′(ct)
=

1

R
= δ (29)

This condition is known as the Euler6 equation for our dynamic
programming problem. We can alternatively derive it by starting out
with an optimal consumption plan, increasing consumption in period
t by a small amount ∆c and reducing consumption in period t + 1
by R∆c so that wealth at the end of the period t + 1 is once again
the same as what it would have been under the optimal plan. The
first-order change in utility from this deviation is

∆u = u′(ct)[∆c]− u′(ct+1)[R∆c]

Now for the original plan to have been optimal ∆u must be 0 since if
∆u > 0 the deviation considered above increases total utility whereas
if ∆u < 0 then the opposite of the deviation considered above increases
total utility. But ∆u = 0 implies

u′(ct)−Ru′(ct+1) = 0

which is again our Euler equation (29).
The Euler equation also follows from the first-order conditions (8)

of the Lagrange-multiplier approach, showing that we have come full
circle.

The Euler equation tells us how consumption should grow or de-
cline. It does not tell us the level of the consumption. But we can
characterise the entire consumption path if we keep track of the path
of wealth implied by the path of consumption and impose, in addition
to the Euler equation, the conditions

w0 = w0

6Pronounced “oiler”. Named after a eighteenth-century mathematician who
was among the earliest to study dynamic optimisation problems.
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which comes to us as a given data and

wT = 0

which comes to us from our no bequest, no terminal borrowing, mono-
tonic utility assumptions about the terminal period.
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CHAPTER 6

Probability

We assume that you are familiar with concepts such as sample
space, random variable, expectation and conditional expectation. Here
we only discuss some ideas important for macroeconomic applications.
Our mathematical treatment is applicable to only to probability spaces
with a finite number of outcomes but the ideas can be carried over to
more general settings. References to more advanced treatments are
provided at the end of the chapter.

1. Information structures

In macroeconomics we often have to deal simultaneously with ran-
domness and time. For example, we might be interested in the entire
time path of an agent’s consumption expenditure when the expendi-
ture in each period is random and may depend on other random factors
as the consumer’s income.

One way in which we could try to simultaneously model random-
ness and time would be to set up a different sample space for each
time period. We would then define random variables corresponding
to quantities measured in a particular period on the sample space for
that period. However, if we do so we would not be able to model the
dependence between quantities in different periods. Such dependence
however is common. For example, receiving a promotion in period t
may increase the likelihood of a high income in period t+ 1 as well.

To capture the dependence between random events at different
periods of time, we need a common sample space on which random
variables corresponding to different time periods can be simultaneously
define. We are thus led to construct a sample space such that each
sample point contains enough information to tell us about the entire
trajectory of any quantity that we may be interested in. While we
continue to refer to sample points as “states of the world” in this

39



1. INFORMATION STRUCTURES

context they are better seen as complete “histories of the world”—
each sample point representing one possible history.

When modelling the combination of randomness and time we must
also represent the fact that information is only gradually revealed to
agents. Even though each sample point contains information regard-
ing the entire trajectory of all variables, this full trajectory is not
known to agents when they take decisions. At the very best, agents
taking a decision at time t know only what has happened until time t.
They have no way of looking into the future. In many economically
interesting problems, there may be agents who do not even have full
information regarding current and past events.

We need some way to keep track of what is known when. The
way we do this is by grouping together outcomes (sample points) at
each point of time. Two outcomes are placed in the same group if
they cannot be distinguished based on information that is available at
that point of time. Two outcomes which are not distinguishable at
one point of time may become distinguishable at a later point of time
when more information arrives. However, we assume that people never
forget what they know—so if two outcomes were distinguishable at a
point of time then they must remain distinguishable at future points
of time.

Here’s an example. Suppose we toss a coin thrice in a row. Each
sample point must give us information regarding the full history of the
tosses, so the sample space is,

Ω = {HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

Before we have begun to toss the coins we don’t know which of these
trajectories our world will follow. So all the outcomes are indistin-
guishable from each other. Suppose that the first toss turns up heads.
We know that the history of our world must be one of

{HHH,HHT,HTH,HTT}

but we cannot distinguish between different members of this set since
they differ in the outcomes of the second and the third tosses which
we have not observed yet. Similarly if the first toss had come up tails
we would have known that our world must be one of

{THH, THT, TTH, TTT}
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but again we could not make a finer distinction. So the set of indis-
tinguishable groups is

{{HHH,HHT,HTH,HTT}, {THH,THT, TTH, TTT}}.
Now suppose the outcome of the second toss is revealed to us.

Knowing this outcome allows us to distinguish between some of the
outcomes we could not distinguish between before. The set of indis-
tinguishable groups becomes,

{{HHH,HHT}, {HTH,HTT}, {THH,THT}, {TTH, TTT}}.
With this example at hand we can now give the following formal

definitions.

Definition 6.1 (Partition). A partition P is a set of subsets Ai

of Ω such that Ai ∩Aj = ∅ if i ̸= j and ∪iAi = Ω.

In the language of events a partition is a collection of mutually
exclusive and exhaustive events.

Definition 6.2 (Fineness). Given two partitions P and Q, the
partition P is said to be finer than the partition Q if for every A ∈ P
there is a B ∈ Q such that A ⊂ B.

Thus P is finer than Q if every event in P is a subset of some event
in Q.

Definition 6.3 (Information structure). An information structure
is a sequence of partitions Pt such that if t ≥ s then Pt is finer than
Ps.

The interpretation is the same as that in our coin-tossing exam-
ple. Each event in Pt consists of outcomes that cannot be distinguished
based on information at time t. The requirement that partitions at
later times be finer than partitions at earlier times says that informa-
tion is not forgotten—two events that were distinguishable at time s
and hence belonged to different events in Ps cannot become indistin-
guishable at time t.

2. Event tree

Event trees provide a graphical representation of information struc-
tures. Every event in Pt becomes a node in the tree. Since partitions
must become finer over time, for every node A in Pt+1 there must be a
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..{HHH,HHT,HTH,HTT, THH, THT, TTH, TTT}.

{HHH,HHT,HTH,HTT}

.

{HHH,HHT}

.

{HHH}

.

{HHT}

.

{HTH,HTT}

.

{HTH}

.

{HTT}

.

{THH, THT, TTH, TTT}

.

{THH, THT}

.

{THH}

.

{THT}

.

{TTH, TTT}

.

{TTH}

.

{TTT}

Figure 6.1. Event tree for the coin-tossing example.
Nodes in red trace the path of the outcome THT .

node B in Pt such that A ⊂ B. In that case we draw an arrow from B
to A. For example Figure 6.1 shows the event tree for the coin tossing
example.

For each outcome in the sample space, we can think of the evolu-
tion of the system over time tracing out a path in the event tree by
picking up the nodes to which the outcome belongs and following the
arrows which join these nodes. Thus, for example, in Figure 6.1 the
nodes in red trace out the path corresponding to the outcome THT .

3. Partitions generated by random variables

We have seen that partitions of the sample space can be used
to model the state of knowledge of an agent, with all the outcomes
belonging to a single event in the partition being considered to be
indistinguishable.

Since the value of a random variable differs from point to point in
the sample space, a random variable also conveys information about
what the state of the world is. The information is not necessarily full
information, since the random variable may have the same value at
two different points in the sample space. In fact, for a given random
variable X, if we consider all sample points at which X has the same
value as indistinguishable and all points at whichX has different values
as distinguishable we obtain a partition of the sample space. This is
called the partition generated by X, denoted by P(X).
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In economic models we often want to specify that the information
contained in a random variable X be no more than the information
already available according to another partition P. This is captured
by the following definition.

Definition 6.4 (Measurability). A random variable X is mea-
surable with respect to a parition P if P is finer than the partition
generated by X.

Note that we have only required P to be finer than the partition
generated by X and not necessarily equal to it. This is because we
want to allow for the fact that P contains more information than is
conveyed by X so that we can distinguish between two outcomes on
the basis of P even though we cannot distinguish them on the basis of
X. All that we require is that things that we can distinguish on the
basis of X be distinguishable on the basis of P.

There are two reasons why we may want to impose the require-
ment of measurability on the variables of a model. First, in the case of
exogenous variables we would like to impose this requirement to model
the fact that the information contained in X is already captured in
P. So for example we will assume that the consumer’s endowment is
measurable if we want to model the fact that consumers know what
their endowments are. Second, for an endogenous variable we want
to model the fact that the consumer’s decisions are limited by the in-
formation that they have. Thus we would require that consumption
expenditure should be measurable since if a consumer cannot distin-
guish between two states of the world on the basis of her information,
there is no way that she can choose different condumption expenditure
in those two states.

A sequence of random variables Xt indexed by time is known as
a stochastic process. A stochastic process captures the evolution of a
random process over time.

We have already modelled the evolution of information over time
by an information structure. The extension of the notion of measura-
bility to this intertemporal context is given by the following.

Definition 6.5 (Adapted Process). A stochastic process Xt is
adapted to an information structure Pt ifXt is measurable with respect
to Pt for each t.
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Thus the knowledge of the values taken by a process adapted to Pt

does not convey any more information at time t than what is conveyed
by Pt itself. If we represent Pt by an event tree then a process Xt is
adapted to Pt if any only if it takes the same value on all the outcomes
that belong to a single node of the event tree. Because of this property
of processes which are adapted to an event tree, we can think of the
process as taking on a value on each of the tree nodes, rather than on
each point of the sample space.

4. Conditional expectation

Suppose we do not directly observe the random variable X but
have some other information represented by the partition P. What is
the best that we can say about X given this information? One answer
to this is the concept of condition expectation.

Given a partition P and an outcome ω there is a unique event in
P which contains ω. We denote it by AP(ω).

Definition 6.6 (Conditional expectation). Given a random vari-
ableX and a partition P the conditional expectation ofX with respect
to P, denoted E[X | P] is a random variable defined by

E[X | P](ω) =

∑
ω′∈AP (ω)

X(ω′)P(ω′)

∑
ω′∈AP (ω)

P(ω′)

where P(ω′) denotes the probability of the outcome ω′.

The conditional expectation E[X | P] is a random variable in its
own right. Our best guess about X would depend on what information
we have actually received and therefore would be different in different
states of the world.

Example 6.1. Consider a coin which is tossed twice, so that our
sample space is Ω = {HH,HT, TH, TT}. Assume that all the out-
comes have an equal probability of 1/4.

Let X be the number of heads in a toss. This is a random variable
with the values X(HH) = 2, X(HT ) = 1, X(TH) = 1 and X(TT ) =
0.
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Suppose we have observed only the first toss of the coin. Our
information parition is

P = {{HH,HT}, {TH, TT}}.
What is E[X | P]?

Let us begin with the outcome HH. AP(HH) = {HH,HT} so
we have

E[X | P](HH) =
X(HH)P(HH) +X(HT )P(HT )

P(HH) + P(HT )
= 1.5

Similarly,

E[X | P ](HT ) =
X(HH)P(HH) +X(HT )P(HT )

P(HH) + P(HT )
= 1.5

E[X | P ](TH) =
X(TH)P(TH) +X(TT )P(TT )

P(TH) + P(TT )
= 0.5

E[X | P](TT ) =
X(TH)P(TH) +X(TT )P(TT )

P(TH) + P(TT )
= 0.5

Note that E[X | P] is defined for each element of the sample space,
as a random variable should be. But its value is constant within each
element of P. We will see below that this is a general property of
conditional expectations.

4.1. Properties. We now list some properties that will be useful
for computing conditional expectations later.

4.1.1. Measurability.

Proposition 6.1. For any random variable X, the random vari-
able E[X | P ] is measurable with respect to P.

Proof. The right-hand side of the definition of conditional expec-
tation (Definition 6.6) depends only on the set AP(ω). If ω and ω′′

belong to the same set A in P then we would have AP(ω) = AP(ω
′′)

and hence E[X | P](ω) = E[X | P](ω′′). Since A was an arbitrary
member of P our argument shows that E[X | P] must be constant
over every such set. It is therefore measurable with respect to P. �

This property is a reasonable one. If the information we have does
not allow us to distinguish between the states of the world ω and ω′′

then the best guess we can make about X in the two states must be
the same.
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In a way this is also the most important property of the conditional
expectation. If our information P does not allow us to know the exact
value of X we cannot base our decisions on that value. But we would
always know the value of E[X | P] and can base our decisions on it.

4.1.2. Expectation of a measurable random variables. If a random
variable is measurable with respect to a partition then knowing where
we are in the partition gives us the exact value of the random variable.
No further forecasting is required. So we have,

Proposition 6.2. If the random variable X is measurable with
respect to the partition P then

E[X | P] = X.

The intuition behind the proposition is this: if P already contains
the information in X then knowing the information in P gives us the
actual value of X and no averaging is required.

Rather than proving this result we will prove the following slight
generalisation,

Proposition 6.3. If the random variable X is measurable with
respect to the partition P and Y is any random variable then

E[XY | P] = XE[Y | P ].

Proof. From Definition 6.6 we have

E[XY | P ](ω) =

∑
ω′∈AP (ω)

X(ω′)Y (ω′)P(ω′)

∑
ω′∈AP (ω)

P(ω′)

But if X is measurable with respect to P then X must be constant
over each element of P.
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In particular it must be constant over AP(ω). Since ω ∈ AP(ω), we
have X(ω′) = X(ω) for all ω′ ∈ AP(ω). So we have,

E[XY | P ](ω) =

∑
ω′∈AP (ω)

X(ω)Y (ω′)P(ω′)

∑
ω′∈AP (ω)

P(ω′)

= X(ω)


∑

ω′∈AP (ω)

Y (ω′)P(ω′)

∑
ω′∈AP (ω)

P(ω′)


= X(ω)E[Y | P]

�

4.1.3. Law of iterated expectations. We can imagine the operation
of taking the conditional expectation of a random variable with re-
spect to a partition as a ‘blurring’ operation: within each event of the
partition we replace the individual values of the random variable by a
common average value. The law of iterated expectation says that blur-
ring on a fine grid and then further blurring the result on a coarser
grid gives the same result as blurring the original variable directly on
a coarse grid. More formally,

Theorem 6.1. Given a random variable X and two partitions P
and Q where Q is finer than P it is the case that

E{E[X | Q] | P } = E[X | P].

4.2. Special cases.
4.2.1. Unconditional expectation. Consider the trivial partition T

which has only one element—the full sample space Ω. Then for any
ω we have AT (ω) = Ω and the definition of conditional expectation
gives us

E[X | T ](ω) =

∑
ω′∈Ω

X(ω′)P(ω′)∑
ω′∈Ω

P(ω′)
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But from the axioms of probability
∑

ω′∈Ω P(ω′) = 1, so we have

E[X | T ](ω) =
∑
ω′∈Ω

X(ω′)P(ω′)

You should recognize the right-hand side above as just the uncon-
ditional expectation of X, E[X]. Thus the unconditional expectation
can be seen as a special case of the conditional expectation where the
conditioning is over the trivial partition which represents complete
lack of information.

4.2.2. Expectation conditional on a random variable. When the
partition over which we are conditioning is generated by a random
variable then we say and write, as a form of shorthand, that we are
conditioning on the random variable. So if X and Y are two random
variables then we define

E[Y | X] = E[Y | P(X)].

Example 6.2. Consider a sample space Ω = {ω1, ω2, ω3, ω4} and
two random varables X and Y defined on that sample space. The
probabilities of the sample point and the values of the random variables
at them are

ω P(ω) X(ω) Y (ω)
ω1 4/9 1 1
ω2 2/9 1 0
ω3 2/9 0 1
ω4 1/9 1 0

The partition generated by the random variable Y , P(Y ), is

P(Y ) = {{ω1, ω3}, {ω2, ω4}}.
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Then the conditional expectation E[X | Y ] = E[X | P(Y )] is given
by

E[X | Y ](ω1) = E[X | Y ](ω3) =
X(ω1)P(ω1) +X(ω3)P(ω3)

P(ω1) + P(ω3)

=
1 · (4/9) + 0 · (2/9)

(4/9 + (2/9)
=

2

3

E[X | Y ](ω2) = E[X | Y ](ω4) =
X(ω2)P(ω2) +X(ω4)P(ω4)

P(ω1) + P(ω3)

=
1 · (2/9) + 1 · (1/9)

(2/9 + (1/9)
= 1

4.2.3. Expectation conditional on information at time t. When deal-
ing with stochastic processes we often work with an information struc-
ture, that is, a sequence of partitions Pt. In this context we sometimes
write “expectation conditional on information at time t” when we con-
dition on the partition Pt for a particular t. We also use the notations
Et[X] and E[X | t] as shorthand for E[X | Pt].

5. Independence

We assume that you are familiar with the definition of the indepen-
dence of a set of random variables from elementary probability theory.
It is possible to extend this definition using the language of partitions
we have developed above. We record only the following useful result,

Proposition 6.4. If the random variable X is independent of the
random variables Y1, . . . , Yn then

E[X | Y1, . . . , Yn] = E[X].

The expectation of a random variable X conditional on variables
independent of it is just the unconditional expectation. This makes
intuitive sense since if X is independent of the Yi then knowing the Yi
gives us no knowledge about X.

6. Martingales

Definition 6.7 (Martingale). Let Xt be a stochastic process, and
It and information structure with the following properties:

(1) Xt is adapted to It.
(2) E[Xt+1 | It] = Xt.
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Then the process Xt is said to be a martingale with respect to the
information structure It.1

Among the defining characteristics of a martingale given above the
crucial one is the last: E[Xt+1|It] = Xt. This says that conditional on
the information available in period t the random variable Xt neither
grows nor declines in the next period in expected value terms. In
this a martingale process is like the wealth of a gambler playing a
fair game. Some outcomes of the game increase the gambler’s wealth,
other outcomes of the game decrease the gambler’s wealth, but since
the game is fair the increases and decreases cancel out on an average.

We can use Proposition 6.2 and the properties of a martingale to
show that

E[Xt+1 −Xt | It] = 0

and therefore if Y is any variable measurable with respect to It then

E[(Xt+1 −Xt)Y ] = 0

so that Xt+1 −Xt is uncorrelated with Y . (Give detailed proofs of all
the claims made in this paragraph so far.) That is, the change in the
value of a martingale process is uncorrelated with all the information
available from the past. Speaking loosely, it is a ‘surprise’. And so a
martingale is a sum of surprises.

A random walk is a martingale (Prove. Be careful to specify the
sequence of information sets.) This has led some economic literature
to loosely use the term “random walk” when discussing martingales.
This usage should be avoided since not all martingales are random
walks.

The definition of a martingale tells us about the expectation of a
value of the process in a period conditional on the information in the
immediately preceding period. The following proposition covers the
case where conditioning set and the value is separated by more than
one period.

Proposition 6.5. Let Xt be a martingale with respect to the in-
formation structure It. For any m and any n > 0,

E[Xm+n | Im] = Xm.

1On probability spaces which are not finite, we also need the condition
E[|Xt|] < ∞.
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Proof. The proof is by mathematical induction on n.
For n = 1 the proof follows directly from the definition of a mar-

tingale.
Suppose the lemma is true for n = k. Consider the case n = k+1.

From the law of iterated expectations

E[Xm+k+1 | Im] = E[E[Xm+k+1 | Im+k] | Im].

The martingale property, applied at time m+ k tells us that

E[Xm+k+1 | Im+k] = Xm+k.

The assumption that the lemma is true for n = k gives us,

E[Xm+k | Im] = Xm.

Putting everything together, we have

E[Xm+k+1 | Im] = E[E[Xm+k+1 | Im+k] | Im] = E[Xm+k | Im] = Xm

thus establishing the result for n = k + 1.
Since we have shown that the result is true for n = 1 and it is true

for n = k+1 whenever it is true for n = k, it follows from the principle
of mathematical induction that it is true for all n > 0. �

Exercises

1. Consider a sample space with three points. List all possible par-
titions of this sample space. For each pair of partitions from your
list, state whether one is finer than the other.

2. Consider the sample space Ω = {ω1, ω2, ω3, ω4} and the two parti-
tions

P = {{ω1, ω1}, {ω3, ω4}}
Q = {{ω1}, {ω2, ω3}, {ω4}}.

Give an example of a random variable X which is measurable with
respect to P but not measurable with respect to Q.

3. Let P and Q be two partitions such that P is finer than Q. Ar-
gue that any random variable measurable with respect to Q must
necessarily be measurable with respect to P.
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4. If Xt is a martingale with respect to the information structure It,
show giving reasons for all your steps that

E[Xt+1 −Xt | It] = 0.

5. If Xt is a martingale with respect to the information structure It,
and Yt is a process adapted to It show giving reasons for all your
steps that

E[(Xt+1 −Xt)Yt] = 0.

[Hint. You will need Proposition 6.3 and the law of iterated
expectations.]

6. Let ϵt be a sequence of independent and identically distributed vari-
ables with mean 0 and variance σ2. We define

Yt = ϵt + bϵt−1

for some constant b. Calculate
(a) E[Yt]
(b) Var[Yt]
(c) Cov[Yt, Yt−1]

7. Let ϵt be a sequence of independent and identically distributed vari-
ables with mean 0 and variance σ2. We define

Yt =

{
0 t = 0

bYt−1 + ϵt t > 0

for some constant |b| < 1. Calculate
(a) E[Yt]
(b) Var[Yt]
(c) Cov[Yt, Yt+h] for arbitrary h > 0.

[Hint: See that Y1 = ϵ1, Y2 = bϵ1 + ϵ2, Y3 = b2ϵ1 + bϵ2 + ϵ3, etc.
Use mathematical induction to show

Yt+h = bhYt +

h∑
i=1

bh−iϵt+i.

Proceed from there.]
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References

There are many excellent texts on elementary probability theory,
for example [CA03] or [Ros09].

Our representation of information structures using partitions is
satisfactory only for finite sample spaces. To deal rigorously with more
general probability spaces and random variables which are not discrete
we need to replace partitions by σ-algebras and information structures
by filtrations. These concepts are discussed in texts on “measure-
theroetic probability”. Examples in order of increasing difficulty are
[JP04], [Wil91] and [Bil95].
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CHAPTER 7

Consumption: Uncertainty

1. Euler equation

In the case of uncertainty in labour incomes, but with certain
interest rates, the Euler equation becomes

v′t(ct) = REt[v
′
t+1(ct+1)] (30)

where Et denotes the mathematical expectation conditional on infor-
mation at time t.

2. Quadratic felicity

2.1. Martingale property. Suppose the felicity (i.e. per-period
utility) function is

vt(ct) = βt(act − 0.5c2t )

where a is some constant.
In this case (30) specialises to

a− ct = Rβ(a−Etct+1)

If we further assume that R = 1/β then

Etct+1 = ct (31)

that is, consumption is a martingale process.
Since ct is part of the information set at time t, Etct = ct Therefore,

another way to write (31) is

Et(ct+1 − ct) = 0

which says that the change in consumption between time t and t + 1
has no predictable direction based on information at time t.

This result is a consequence of the very special assumptions that
we have made. Assuming the same felicity function for each period
(apart from the discount factor β) and then assuming that the market
rate of discount (1/R) equals this subjective discount factor creates a
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situation where the consumer has no desire to have a higher consump-
tion in any particular period of her life either to meet greater con-
sumption needs or to take advantage of the difference between market
and subjective discount rates. Unconstrained lending and borrowing
mean that the consumer can actually move around her income across
periods so as to achieve this perfect symmetry in her consumption in
the sense of equating expected marginal utility across periods. But
with quadratic felicity expected marginal utility is the same thing as
expected consumption and we have our martingale result.

The long list of assumptions leading up to the martingale result
means that this precise result is not very robust or realistic. There-
fore rather than taking it as a property that is likely to be literally
true, we should understand it as a demonstration of the tendency of
the lending and borrowing behaviour of consumers to delink current
consumption from current income. This tendency will be there as long
as consumers have access to asset markets, though in more realistic
settings it will be overlaid with factors which impart a systematic pat-
tern to the trajectory of consumption such as a changing pattern of
lifetime consumption needs or differences between the subjective and
market rate of discount.

2.2. The level of consumption. The martingale property of
consumption only tells us how consumption evolves from one point to
the next, not the level of consumption. The level of consumption would
depend on the consumer’s resources in terms of her initial wealth and
expected labour income. We now show that this is so mathematically
by deriving an explicit formula for the level of consumption in the case
where consumption is a martingale.

Consider a consumer who stands at period t with wealth wt and is
planning her future consumption for the periods t, t+ 1, . . . , T . Since
she cannot leave any bequests or outstanding debt in period T , it must
be the case that her realized stream of consumption (ct) and labour
income (yt) must satisfy,

T∑
i=t

δi−tci =
T∑
i=t

δi−tyi + wt (32)
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Taking expectations as of time t,

T∑
i=t

δi−tEtci =

T∑
i=t

δi−tEtyi + wt (33)

From Proposition 6.5 on page 50, Etci = ct for all i > t. And for i = t,
Etct = ct because ct is known at time t. Hence,

ct

T∑
i=t

δi−t =

T∑
i=t

δi−tEtyi + wt (34)

ct =
1∑T

i=t δ
i−t

[
T∑
i=t

δi−tEtyi + wt

]
(35)

Thus the level of consumption in a given period depends on the ex-
pected discounted value of the future stream of labour income over
the entire remaining lifetime as well as initial wealth. This once again
reiterates the idea of the permanent income hypothesis that the con-
sumption in each period depends not just on income in that period
but on the entire expected path of future income.

2.3. Increments in consumption. With an explicit formula for
the level of consumption in hand, we can now try to understand the
martingale result better by seeing what it is exactly that drives changes
in consumption.

Rewriting (34) for period t+ 1 we have,

ct+1

T∑
i=t+1

δi−t−1 =

T∑
i=t+1

δi−t−1Et+1yi + wt+1

Substituting wt+1 = (wt + yt − ct)/δ,

ct+1

T∑
i=t+1

δi−t−1 =

T∑
i=t+1

δi−t−1Et+1yi + (wt + yt − ct)/δ

Multiplying throughout by δ,

ct+1

T∑
i=t+1

δi−t =
T∑

i=t+1

δi−tEt+1yi + wt + yt − ct
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Subtracting (34) from this equation

(ct+1 − ct)

T∑
i=t+1

δi−t − ct =

T∑
i=t+1

δi−t(Et+1yi − Etyi) + yt − Etyt − ct

But Etyt = yt since income at time t is known at that time,

(ct+1 − ct)

T∑
i=t+1

δi−t =

T∑
i=t+1

δi−t(Et+1yi − Etyi)

ct+1 − ct =
1∑T

i=t+1 δ
i−t

[
T∑

i=t+1

δi−t(Et+1yi − Etyi)

]

We can divide both the numerator and denominator by δ to have the
factor multiplying the first term in the sums equal to one.1 This gives
us our final formula,

ct+1 − ct =
1∑T

i=t+1 δ
i−t−1

[
T∑

i=t+1

δi−t−1(Et+1yi − Etyi)

]
(36)

What the formula above says is that changes in consumption are a
result of revisions in expectations of future income based on the dif-
ference in information at time t and t + 1. Therefore changes in in-
come that were predictable at time t do not contribute to the change
in consumption between time t and t + 1. This is consistent with
our assumption that consumption is a martingale but goes further by
predicting the actual size of the consumption change rather than just
asserting that the expected value of this change would be zero.

2.4. Specific income processes. In general the difference in
expectations which occur on the right of (36) depends on all the in-
formation which becomes available to the consumer between time t
and t + 1. One special case which we now consider is when the only
source of new information is the realisation of the labour income yt+1.
What revision this new information causes in the expectation of future
labour income depends on how labour income in different periods are
related.

1This is a purely aesthetic change and does not change any results.
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As an example consider the labour income process given by the
following stochastic difference equation,

yt+1 − µ = ρ(yt − µ) + ϵt+1 (37)

where ϵt is a white-noise process, µ and ρ are constants and 0 < ρ < 1.
This is a special case of what is known as a first-order autoregressive
process (sometimes denoted as a AR(1) process). The coefficient ρ
measures how persistent the deviations in y from its long-run average
µ are.

Writing (37) for the period t+ 2 we have,

yt+2 − µ = ρ(yt+1 − µ) + ϵt+2

Substituting (37),

yt+2 − µ = ρ2(yt − µ) + ρϵt+1 + ϵt+2

Carrying out successive substitutions like this, we find for any i > t

yi − µ = ρi−t(yt − µ) +

i∑
j=t+1

ρi−jϵj

Taking expectations conditional on the information at time t,

Et(yi − µ) = ρi−t(yt − µ) +

i∑
j=t+1

ρi−jEtϵj

Here we have used the fact that yt is known at time t. We further note
that since ϵt is IID, ϵj is independent of all information at time t when
j > t and we can replace Etϵj by Eϵj which is 0 by the definition of
white noise. Hence we conclude,

Et(yi − µ) = ρi−t(yt − µ) for i ≥ t (38)

(We have established this above for i > t and it is trivially true for
i = t.)

Using t+ 1 in the place of t,

Et+1(yi − µ) = ρi−t−1(yt+1 − µ) for i ≥ t+ 1 (39)

For i ≥ t+1 both (38) and (39) hold. Subtracting the former from
the latter we have,

Et+1yi − Etyi = ρi−t−1(yt+1 − µ)− ρi−t(yt − µ)
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Using (37),

= ρi−t−1[ρ(yt − µ) + ϵt+1]− ρi−t(yt − µ)

= ρi−t−1ϵt+1

Substituting this in (36) we get,

ct+1 − ct =

[∑T
i=t+1(δρ)

i−t−1∑T
i=t+1 δ

i−t−1

]
ϵt+1

So we see that for a given innovation in consumption, ϵt+1, the incre-
ment in consumption is higher the higher is the degree of persistence
ρ in the income process.

In empirical applications of the model we can estimate ρ (or its ana-
logues for more complex income processes) from data on consumers’
incomes and then check if changes in consumption satisfy the forumla
above. This yields a sharper test of our theory compared to just check-
ing if consumption is a martingale.
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Neoclassical Optimal Growth Model

1. The Problem

The planner maximises

∞∑
t=1

δt−1u(ct)

where u : R+ → R∪{−∞} is an upper semicontinuous strictly increas-
ing function.

We are given a continuous production function f such that f(0) ≥
0. Define f t(k) recursively by

f t(k) =

{
f(k) t = 1

f [f t−1(k)] t > 1
.

So f t(·) is the t-th iterate of the function f .
A pair of sequences (c,k) is feasible from k is ct, kt ≥ 0 and

0 ≤ kt + ct ≤ f(kt−1) for t = 1, 2, . . .. The feasible set is Y(k0) =
{(c,k) | (c,k) is feasible from k0}. The sets of feasible capital and
consumption programs are F(k0) = {k | (c,k) ∈ Y(k0) for some c}
and B(k0) = {c | (c,k) ∈ Y(k0) for some k}

2. Existence

Lemma 8.1. The sets F(k0) and B(k0) are compact for all k0.

Proof. Since ct, kt ≥ 0 we have

Y(k0) ⊂
∞∏
t=1

([0, f t(k0)]× [0, f t(k0)]).

The latter set is compact by Tsychonoff’s theorem. Y(k0) is closed
by the from the inequalities defining it and the continuity of f . Thus
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Y(k0) is compact. The sets F(k0) and B(k0) being projections of the
compact set Y(k0) are also compact. �

The following is the “Basic Existence Theorem” of Becker and
Boyd [BB97, Section 4.2.3].

Theorem 8.1. Suppose the basic assumptions are satisfied, u(c) ≤
a+ bcγ/γ, and f(k) ≤ α+βk with β ≥ 1 and b, α ≥ 0. If βγδ < 1 and
either a = 0 or δ < 1, then an optimal path exists.

Proof. Let θ > β ≥ 1 with θγδ < 1. Now ct ≤ f t(k0) and
f t(k0) ≤ α+αθ+ · · ·+αθt−1+θtk0 = α(θt−1)/(θ−1)+θtk0 by induc-
tion. Since θ > 1, ct ≤ [k0+α/(θ−1)]θt. Let A = b[k0+α/(θ−1)]γ/γ
and let gt(ct) = u(ct) − a − Aθγt ≤ 0 for feasible c. On the fea-

sible set, the partial sums ST (c) =
∑T

t=1 δ
t−1gt(ct) form a decreas-

ing sequence of upper semicontinuous functions. Their limit, which
equals their infimum, is upper semicontinuous. Now

∑∞
t=1 gt(ct) =

U(c)− a/(1− δ)−Aθγ/(1− θγδ). Thus U(c) is upper semicontinuous
on the compact set B(k0). By the Weierstrass Theorem, an optimal
path exists. �

3. Characterization

4. Dynamics

References

This chapter is based closely on [BB97]. They refer to the model
discussed in this chapter as the “time additive separable” (TAS) model.
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CHAPTER 9

Overlapping Generations

The Ramsey model is at least in two ways a well-behaved model.
First, the market equilibrium in the model is always Pareto optimal.
Second, the dynamics of the model is very simple. Regardless of what
capital stock we start the model with, both the capital/labour ra-
tio and consumption/labour ratio move monotonically1 towards their
steady-state values.

This simplicity of the Ramsey model is deceptive. Even within the
Ramsey framework, very complex dynamics is possible if we consider
multisector models rather than the single-good model that we have
studied. However, equilibria are Pareto efficient in all Ramsey models,
so this complex dynamics is still efficient.

This is not the case in the overlapping generations models that we
consider in this chapter. These models can demonstrate both com-
plex dynamics and Pareto suboptimal equilibria. These models are
completely orthodox methodologically: all agents in these economies
are optimisers and have perfect foresight and all markets are competi-
tive and in equilibrium at all times. Therefore their behaviour is even
more surprising and causes us to question our understanding of the
behaviour of even idealised competitive market economies.

An overlapping generations economy is an infinite-horizon econ-
omy in which the agents can be grouped into different ‘generations’
such that the following properties hold.

(1) At each point of time members of different generations coex-
ist.

(2) There are generations whose lifetime is not the same as the
lifetime of the entire economy.

1that is, without changing their direction of movement
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The above definition tries to capture the essence of the many differ-
ent varieties of overlapping generations economies that have been stud-
ied in the literature. However, in this chapter we shall limit ourselves
to very simple examples. We will find instances of counter-intuitive
behaviour in even these simple cases.

1. Pure exchange: Incomplete Participation

Our first example is that of a pure exchange economy, i.e. an econ-
omy without production. Time is discrete and doubly infinite: there
is an infinite past as well as an infinite future.

Agents have a two-period lifetime. At the beginning of each period
a new generation of agents is born, which dies at the end of the next
period. Following convention, we refer to the agents in the first period
of their lives as ‘young’ and in the second period of their lives as ‘old’
respectively.

All agents in the same generation are identical and each generation
has the same number of agents. Because of these assumptions we can
replace each generation by a single representative agent.

There is a single physical good in the economy which is not storable.
Each agent is endowed with some quantity of this good in each of the
periods of their lives.

Even though there is only one physical commodity, agents care not
only about how much of this commodity they have but also when they
have it. Therefore in economic terms we need to tag the quantities of
the commodities with dates on which those quantities would be avail-
able. Thus, even with a single physical commodity there is a separate
economic commodity corresponding to the delivery of this physical
commodity on a particular date. Since our model has infinite number
of periods we therefore have an infinity of economic commodities in
our model. We call these economic commodities ‘dated-commodities’
to indicate that along with a physical description each commodity is
also marked with a delivery date.

In this section we assume that in every period markets open to
allow trading in all dated-commodities. Only those agents who live in
a particular period can participate in that period’s market. Neither
the unborn nor the dead can trade. It is because of this last assumption
that the model of this section is called a model of limited participation.
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To keep things simple we assume that every generation is alike
in terms of having the same pattern of endowments and the same
preferences over consumption streams. Note that this does not mean
that the two periods of an agent’s lifetime are alike. It is possible
that the agents want to consume more when they are old. Or perhaps
agents are richer when they are young. All we are assuming is that if
one generation is richer when it is young then so are all generations
and so on. This assumption of stationarity means that every period
looks alike in our model. But in each period some agents are young
and some are old and this is enough to generate interesting phenomena
since we allow endowments and preferences to be age-dependent.

1.1. Notation. We will denote agent-specific variables by two
subscripts: the first to indicate whether the variables pertains to the
young (1) or old (2) and the second to indicate the date to which
the variable pertains. So an agent born in period t, who lives in the
periods t and t+1 will have the consumption stream (c1,t, c2,t+1) since
the consumer will be young in period t and old in period t+1. On the
other hand the total consumption in period t will be c1,t+c2,t since we
need to add up the consumption of the young and the old, belonging
to different generations, who live in period t.

Our assumption of stationarity makes the notation simpler for en-
dowments and utility functions. All generations have the same endow-
ment stream (ω1, ω2) and utility function U(c1,t, c2,t+1).

1.2. Equilibrium. The way we have set up the model there is
no opportunity to trade. Because there is only one good there are no
trades within a period since there is no point buying and selling the
same good. Therefore all trade must be across time, or in simpler lan-
guage, the only possible trades involve borrowing and lending. Since
each generation is homogeneous there cannot be any trade between
members of the same generation. If one member of a generation wants
to borrow then so do all members of that generation and vice versa.
Finally, and most importantly, there can be no trade between gener-
ations because two agents of different generations meet only in one
period. Today’s old cannot trade with today’s young since the former
will not be around tomorrow to repay a loan they receive or collect on
a loan they give. Today’s young cannot trade with tomorrow’s young
since the latter have not been born yet.
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Thus in the way we have set up the model there can be no trade
and the only possible equilibrium is the autarky equilibrium in which
each agent consumes her endowment.

In general equilibrium theory for economies with a finite number
of goods and agents all competitive equilibrium are necessary Pareto
optimal. This result is known as the “First Fundamental Theorem of
Welfare Economics”.2 The following examples shows that this theorem
does not necessarily hold for overlapping generations model.

Example 9.1. Consider the economy as described above with the
utility function for the initial old given by

u(c2,0) = ln(1 + c2,0)

and utility function for later generations given by

u(c1,t, c2,t+1) = ln(1 + c1,t) + ln(1 + c2,t+1).

Suppose endowments are ω1 = 1, ω2 = 0.
The autarkic equilibrium involves everyone consuming their en-

dowments, i.e.

c1,t = 1, c2,t = 0

The utility of the initial old under this equilibrium is

u(c2,0) = ln(1 + 0) = 0

and the utility of all later generations is

u(c1,t, c2,t+1) = ln(1 + 1) + ln(1 + 0) = ln 2.

It turns out that this allocation is not Pareto optimal. Consider
the alternative allocation

ĉ1,t = ĉ2,t = 1/2

We first check that this allocation is feasible given the economy’s re-
sources

ĉ1,t + ĉ2,t = ω1 + ω2 = 1

The utility of the initial old under the hat allocation is higher

u(ĉ2,0) = ln(1 + 1/2) = ln 3/2 > 0

2See [MCWG95, 16.C]. The additional technical assumption of local non-
satiation of preferences is required. This is satisfied in all our examples.
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The utility of all other generations under the hat allocation is also
higher

u(ĉ1,t, ĉ2,t+1) = ln(1 + 1/2) + ln(1 + 1/2) = ln(3/2)2 > ln 2.

Thus the hat allocation is a feasible allocation that makes all agents
better off than the competitive allocation. Thus it is a Pareto improve-
ment over the competitive allocation and its existence shows that the
competitive allocation is not Pareto optimal.

�
Example 9.2. Consider an economy with the same structure as

before but in which time is doubly infinite, i.e. time neither has a
beginning nor an end. Because there is no initial period there is no
initial old generation to consider. All generations are alike. Each
generation has the utility function

u(c1,t, c2,t+1) = ln(1 + c1,t) + ln(1 + c2,t+1).

and the endowment
ω1 = 0, ω2 = 1.

Once again, because any two generations meet only in a single pe-
riod no trade is possible and the equilibrium allocation is the autarkic
one

c1,t = 0, c2,t = 1

The alternative allocation

ĉ1,t = 1/2, ĉ2,t = 1/2

is feasible and we can check that it makes every generation strictly
better off. So the autarkic equilibrium is once again not Pareto opti-
mal.

�
The failure of the First Fundamental Theorem in these examples

is since this theorem has very few explicit assumptions and a straight-
forward proof and therefore would be expected to hold quite generally.
What is going wrong?

The infinity of time certainly has a role to play. In Example 9.1
the Pareto improvement comes about because each generation gives up
half a unit of the consumption goods to its elders during its youth and
in return receives half a unit of the consumption good from its juniors
in its own old age. If there had been an end of time then the last
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generation would not have had any juniors to compensate them and
would have been worse off. Then the new allocation would no longer
be a Pareto improvement. In Example 9.2 the direction of transfers is
the opposite and hence there would be no Pareto improvement if there
had been a beginning of time.

However, the infinity of time cannot by itself explain the failure
of the First Fundamental Theorem. The Ramsey model provides a
counterexample of a type of economy which also has infinite time but
where the First Fundamental Theorem always holds.

One property which differentiates overlapping generations models
from both finite equilibrium models and the Ramsey model is the
property of limited participation. Only agents who are alive on a
certain date are allowed to buy and sell commodities deliverable on
that date. The unborn and the dead are excluded from markets. While
this is certainly reasonable from an economic point of view, can it be
this exclusion which is responsible for the possibility of competitive
equilibria not being Pareto optimal in this model?

2. Pure Exchange Economies: Complete Participation

To see whether it is the incompleteness of market participation
which leads to non-Pareto optimal equilibria, we modify the overlap-
ping generations by allowing all agents to trade in all dated commodi-
ties and looking for equilibrium prices. We might imagine a market-
place that stands outside of time, in which souls can trade for delivery
of commodities at any point of time. We look for prices at which the
demands and supplies of the souls of different generations match. We
show by an example that even when completing the markets in this
manner there still can be equilibria which are not Pareto optimal.

Example 9.3. We continue with the economy of Example 9.2 in
which time is doubly infinite, preferences are given by

u(c1,t, c2,t+1) = ln(1 + c1,t) + ln(1 + c2,t+1).

and endowments are
ω1 = 0, ω2 = 1.

Suppose that the price of the good in period t is pt. Then the
consumer born in time t solves the problem

max
c1,t,c2,t+1

ln(1 + c1,t) + ln(1 + c2,t+1)
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subject to

pt(ω1 − c1,t) = pt+1(c2,t+1 − ω2)

Assuming an interior solution the solution to this optimisation
problem is3

c1,t =
2(pt+1/pt)− 1

2
, c2,t+1 =

pt
2pt+1

(40)

Equilibrium requires

c1,t + c2,t = ω1 + ω2 = 1, for all t (41)

There are many sequence of prices which satisfy the above equi-
librium conditions. Here are two interesting ones.

First, the sequence (. . . , 4, 2, 1, 1/2, 1/4, . . .). That is pt = 1/2t for
all t. With these prices we see from (40) that c1,t = 0, c2,t+1 = 1 for
all t which satisfies (41). This is an equilibrium in which every agent
consumes their endowment—an allocation which we have shown to be
Pareto inferior earlier.4

Second, consider the prices (. . . , 1, 1, 1, . . .). That is pt = 1 for all t.
For these prices c1,t = 1/2, c2,t+1 = 1/2 which again satisfies (41). This
allocation is an Pareto improvement on the previous allocation and we
show in the appendix to this chapter that it is in fact Pareto optimal,
that is there is no possibility of a further Pareto improvement from
this allocation.

�

Example 9.3 shows that Pareto suboptimal equilibria can persist
in an overlapping generations economy even when we assume that
all agents can participate in all markets. Thus it is not incomplete
participation which is to blame for the Pareto suboptimality. Rather,
it is the combination of an infinite horizon and an infinity of agents
who do not live forever which is to blame for the failure of the First
Welfare Theorem.

3Exercise: derive this.
4We derived our demand functions (40) assuming an interior solution to the

consumer’s maximisation problem. On the other hand, the allocation in this case
lies on the boundary of the consumption set since c1,t = 0. Why is this not a
problem?

68 v4.3.1



CHAPTER 9. OVERLAPPING GENERATIONS

3. Money

Overlapping generations models have also been used as a tool
for studying monetary economies. Modern fiat money—unlike money
based on precious metals—is intrinsically worthless. It is neither useful
as an object of consumption nor is it useful as a factor of production.
It is demanded only in the expectation that it will be accepted in ex-
change for useful goods. But those who accept money must in turn
expect that it will be accepted by others when they try to spend it.
This dependence of the value of money on the general belief in its
acceptability is captured well by overlapping generations models.

Consider an economy with singly-infinite time. The initial old have
a utility function given by

u0(c2,0)

and other generations have an utility function

u(c1,t, c2,t+1).

Endowments in the two periods are ω1 and ω2 respectively.
Only living people can trade. As we discussed earlier, with this

assumption the only equilibrium in this model is an autarkic one.
Example 9.1 shows that this autarkic equilibrium might not be Pareto
optimal.

Now suppose we endow the initial old with M units of useless but
durable green pieces of paper that we call ‘money’. Assume that just
like goods this money can also be traded by agents alive at each date.
Let pt be the price of the consumption good in terms of money at time
t.

The decision problem of the initial old is simple. Since they have
only one period to live and money is useless they sell the money for
whatever it is worth in terms of consumption goods. So we have

c2,0 = M/p0 (42)

The later generations now have the choice of selling some goods
in their youth and acquiring money. Since money is durable they can
carry it over to their old age and spend it for consumption goods then.
If we denote by Md

t the amount of money demanded in their youth
by the generation born in period t then the optimisation problem for
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that generation is

max
c1,t,c2,t+1,Md

t

u(c1,t, c2,t+1)

subject to

pt(ω1 − c1,t) = Md
t

pt+1(c2,t+1 − ω2) = Md
t

Md
t ≥ 0

If we define real money demand by md
t = Md

t /pt and the rela-
tive increase in prices by πt+1 = pt+1/pt then the above optimization
problem can be rewritten as

max
c1,t,c2,t+1,md

t

u(c1,t, c2,t+1)

subject to

ω1 − c1,t = md
t

c2,t+1 − ω2 = md
t /πt+1

md
t ≥ 0

This form of the optimisation problem makes it clear that the
real money stock demanded by a young agent equals that agent’s real
savings and 1/πt+1 is the returns that the agent earns on her savings.

The solution of the optimisation problem gives us md
t , c1,t and

c2,t+1 as functions of πt+1. In particular we define

md
t = L(1/πt+1)

Equilibrium in the money market requires

L(1/πt+1) = M/pt (43)

Equilibrium in the goods market requires

c1,t + c2,t = ω1 + ω2 (44)

From Walras’ law we know that if one of these equilibrium condi-
tions is satisfied then the other will be satisfied automatically.
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For periods t > 0 we can use the consumer’s budget constraint to
rewrite (44) as follows

c1,t + c2,t = ω1 + ω2

c2,t − ω2 = ω1 − c1,t

md
t−1/πt = md

t

L(1/πt)
1

πt
= L(1/πt+1)

(45)

Using (43) for t = 0 and (45) for t > 0 and remembering that
Walras’ law allows us to use just one equilibrium condition per period
we have the equilibrium conditions

L(1/π1) = M/p0 (46)

L(1/πt)
1

πt
= L(1/πt+1), t > 0 (47)

For simplicity let us look at steady state equilibria where πt and
hence c1,t and c2,t are constants. Then the equilibrium conditions
become,

L(1/π) = M/p0 (48)

L(1/π)(1/π) = L(1/π) (49)

There are two solutions to these equations. The first is a value of
π = π∗ where

L(π∗) = 0.

There is always such a π∗ since if we take the relative price ratio be-
tween consumption in the two periods to be equal to the consumer’s
marginal rate of substitution at the endowment point then the con-
sumer is happy consuming her endowment and does not want to hold
any money.

If L(π∗) = 0 then (48) cannot strictly be satisfied if M > 0. How-
ever, loosely speaking we can say that this equation is satisfied with
p0 = ∞. An infinite price of good in terms of money means that it is
impossible to buy even the smallest amount of goods with any amount
of money however large. Money is thus valueless in this equilibrium
and everyone continues to consume their endowment.5

5If you are uncomfortable with infinity as a price, you can get rid of it as follows.
Rather than choosing money as the numeriare choose an abstract numeriare in
terms of which µt is the price of money and λt is the price of goods in period t.
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The other steady-state solution is the one with π = 1. In this
case (49) is automatically satisfied and (48) gives us

p0 = M/L(1)

If L(1) = 0 then this once again gives us a equilibrium with p0 =
∞ where money is not valued. But if L(1) > 1 then we have an
equilibrium in which money has a constant value in the steady state.
Thus even if money is useless it is possible to have an equilibrium with
valued money in an overlapping generations model.

Appendix

Proposition 9.1. In the overlapping generations model with util-
ity function

u(c1,t, c2,t+1) = ln(1 + c1,t) + ln(1 + c2,t+1),

stationary endowments ω1 = 1, ω2 = 0 and doubly-infinite time, the
stationary allocation c1,t = 1/2, c2,t = 1/2 is Pareto optimal.

The main idea. If the allocation mentioned in the proposition is
not Pareto optimal then there must be another allocation which is a
Pareto improvement, i.e. which makes everyone at least as well off and
at least one agent strictly better off. Let us denote this allocation by
(ĉ1,t, ĉ2,t).

Since any leftover output can be given to some agent to make them
better off without making anyone worse off, we assume we have already
done so, so that,

ĉ1,t + ĉ2,t = ω1 + ω2 = 1 (50)

If the allocation with the hats is different from (1/2, 1/2) there
must be some t for which ĉ1,t ̸= 1/2 or ĉ2,t ̸= 1/2. From (50) it then
follows that for that t either ĉ1,t > 1/2 or ĉ2,t > 1/2. (Why?)

Assume that ĉ2,t > 1/2 for some t.
(The argument remains basically unchanged when ĉ1,t > 1/2 if

time is doubly infinite. All that we have to do is to look at periods
before t rather than at periods after t as we do below. A little more
change is required if time has a beginning. Try to think through both
these cases once you have studied the case where ĉ2,t > 1/2.)

Arguing as above then you will find an equilibrium with µt = 0 for all t. Our
pt = λt/µt and hence it turns out to be infinite in this equilibrium.

72 v4.3.1



CHAPTER 9. OVERLAPPING GENERATIONS

If ĉ2,t > 1/2 then from (50) it must be the case that ĉ1,t < 1/2.
That is, the young born in period t consume less in their youth under
the hat allocation than they did in the initial allocation. But if the
hat allocation is to be a Pareto improvement then these period-t young
have to be at least as well off under the hat allocation as under the
original allocation. This can happen only if they consume more in their
old age under the hat allocation than under the original allocation. So,
it must be that ĉ2,t+1 > 1/2.

Let

δt = 1/2− ĉ1,t

ϕt = ĉ2,t+1 − 1/2

We are looking at the case where δt > 0 and we have argued in
the last paragraph that ϕt > 0. In fact we can do better than that.
Here’s how. Consider the possibility that ϕt = δt. Then

u(ĉ1,t, ĉ2,t+1) = u(1/2− δt, 1/2 + ϕt)

= u(1/2− δt, 1/2 + δt)

= ln(1 + 1/2− δt) + ln(1 + 1/2 + δt)

= ln[(3/2− δt)(3/2 + δt)]

= ln[9/4− δ2t ]

< ln(9/4) = u(c1,t, c2,t+1)

Thus increasing consumption in old age by the same amount as
consumption is reduced in youth will make the generation-t agent
strictly worse off than she was under the original (1/2, 1/2) alloca-
tion. Therefore if the hat allocation is to keep the consumer at least
as well off as before it must be the case that

ϕt > δt (51)

But where is this extra consumption going to come from? It can
only come by reducing the consumption of the young in period t+ 1.
Since

ĉ1,t+1 + ĉ2,t+1 = 1 = 1/2 + 1/2

It must be the case that,

1/2− ĉ1,t+1 = ĉ2,t+1 − 1/2
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If we define δt+1 = 1/2− ĉ1,t+1 the above shows that

δt+1 = ϕt > δt > 0

Defining ϕt+1 = ĉ2,t+2 − 1/2 and applying the argument that we
applied to generation t to generation (t+ 1) we find that

δt+2 = ϕt+1 > δt+1 > 0

Continuing to repeat this argument we get the chain of inequalities

δt < δt+1 < δt+2 < · · · (52)

The above chain of inequalities shows that δk increases with k.
But there is an upper bound on δk. Since

δk = 1/2− ĉ1,k

and ĉ1,k ≥ 0 it must be the case that

δk ≤ 1/2 (53)

If we could use (52) to argue that δk grows without bounds then
that would contradict (53) and we would have succeeded in proving
that it is not possible to construct a Pareto improvement over the
original allocation (1/2, 1/2).

Unfortunately this is not the case. Equation (52) does not imply
unbounded growth of δk. A sequence like

0.4, 0.44, 0.444, 0.4444, . . .

can satisfy both (52) and (53). So in order to be successful in our
proof we have to find a way to strengthen (52).

A stronger inequality. As before we define

δk = 1/2− ĉ1,k > 0

ϕk = ĉ2,k+1 − 1/2 > 0

Also as before feasibility requires

ϕk = δk+1 (54)
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For the hat allocation to be a Pareto improvement it is necessary
that

u(ĉ1,k, ĉ2,k+1) ≥ u(c1,k, c2,k+1)

u(1/2− δk, 1/2 + ϕk) ≥ u(1/2, 1/2)

ln[(3/2− δk)(3/2 + ϕk)] ≥ ln(9/4)

9

4
+

3

2
ϕk −

3

2
δk − δkϕk ≥ 9

4
ϕk

δk
≥ 1

1− 2δk/3

Now we know from (52) that δt ≤ δk for k ≥ t. Applying this to the
denominator of the above expression and remembering that δt ≤ 1/2
from (53) we have

ϕk

δk
≥ 1

1− 2δt/3
≥ 1

1− 2 · (1/2)/3
= 3/2

But ϕk = δk+1 so we have

δk+1

δk
≥ 3/2 (55)

This says that in each period δ grows at least 1.5 times. As a result
it will grow unboundedly starting from any nonzero value. Formally,
by starting from time t and chaining together (55) together j times we
have

δt+j ≥ (3/2)jδt
Provided δt > 0 the right-hand side becomes larger than 1/2 for large
enough j and hence contradicts (53), thus proving that no Pareto
improvement over our original allocation is possible.

Generalisation. The inequalities (52) and (55) were derived us-
ing a particular functional form of the utility function and a particular
initial allocation. But the style of reasoning we have used above can be
generalised to provide a criteria for Pareto optimality applicable to ar-
bitrary utility functions and arbitrary allocations. See Proposition 5.6
of [BS80].
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